Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun-Jul;1797(6-7):817-31.
doi: 10.1016/j.bbabio.2010.03.023. Epub 2010 Mar 31.

Mitochondrial carriers function as monomers

Affiliations
Free article
Review

Mitochondrial carriers function as monomers

Edmund R S Kunji et al. Biochim Biophys Acta. 2010 Jun-Jul.
Free article

Abstract

Mitochondrial carriers link biochemical pathways in the mitochondrial matrix and cytosol by transporting metabolites, inorganic ions, nucleotides and cofactors across the mitochondrial inner membrane. Uncoupling proteins that dissipate the proton electrochemical gradient also belong to this protein family. For almost 35 years the general consensus has been that mitochondrial carriers are dimeric in structure and function. This view was based on data from inhibitor binding studies, small-angle neutron scattering, electron microscopy, differential tagging/affinity chromatography, size-exclusion chromatography, analytical ultracentrifugation, native gel electrophoresis, cross-linking experiments, tandem-fusions, negative dominance studies and mutagenesis. However, the structural folds of the ADP/ATP carriers were found to be monomeric, lacking obvious dimerisation interfaces. Subsequently, the yeast ADP/ATP carrier was demonstrated to function as a monomer. Here, we revisit the data that have been published in support of a dimeric state of mitochondrial carriers. Our analysis shows that when critical factors are taken into account, the monomer is the only plausible functional form of mitochondrial carriers. We propose a transport model based on the monomer, in which access to a single substrate binding site is controlled by two flanking salt bridge networks, explaining uniport and strict exchange of substrates.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources