Embryonic gene expression among pollutant resistant and sensitive Fundulus heteroclitus populations
- PMID: 20363516
- PMCID: PMC3225961
- DOI: 10.1016/j.aquatox.2010.02.022
Embryonic gene expression among pollutant resistant and sensitive Fundulus heteroclitus populations
Abstract
Changes in gene expression, coupled with biochemical, physiological, and behavioral alterations, play a critical role in adaptation to environmental stress. Our goal was to explore ways natural populations may have adapted to local, polluted environments. We took advantage of natural populations of Fundulus heteroclitus, one of the few studied fish species in North America that has established resistant populations in highly contaminated urban estuaries. We analyzed morphology, physiology, and gene expression of developing F. heteroclitus embryos during late organogenesis (stage 31); these embryos were from both resistant and sensitive populations and were raised in a common, unpolluted environment. While cardiac heart rates show significant differences between embryos of parents from clean and heavily contaminated Superfund sites, time-to-stage, embryo morphology, and gene expression profile analyses do not differ significantly between untreated embryos from resistant and sensitive populations. Further evaluation that includes tissue-specific approaches in gene expression analysis and larger sample sizes may be necessary to highlight important phenotypes associated with mechanisms of sensitivity and resistance among natural F. heteroclitus embryo populations. Alternatively, population differences may be masked by developmental canalization, and biologically important differences between sensitive and resistant embryos may only manifest with exposure (e.g., be dependent on gene by environment interactions).
Copyright 2010 Elsevier B.V. All rights reserved.
Figures





References
-
- Adams SM, Lindmeier JB, Duvernell DD. Microsatellite analysis of the phylogeography, Pleistocene history and secondary contact hypotheses for the killifish, Fundulus heteroclitus. Mol Ecol. 2006;15:1109–1123. - PubMed
-
- Armstrong PB, Child JS. Stages of normal development of Fundulus heteroclitus. Biological Bulletin. 1965;128:143–168.
-
- Bickham JW, Sandhu S, Hebert PD, Chikhi L, Athwal R. Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res. 2000;463:33–51. - PubMed
-
- Burnett KG, Bain LJ, Baldwin WS, Callard GV, Cohen S, Di Giulio RT, Evans DH, Gomez-Chiarri M, Hahn ME, Hoover CA, Karchner SI, Katoh F, Maclatchy DL, Marshall WS, Meyer JN, Nacci DE, Oleksiak MF, Rees BB, Singer TD, Stegeman JJ, Towle DW, Van Veld PA, Vogelbein WK, Whitehead A, Winn RN, Crawford DL. Fundulus as the Premier Teleost Model in Environmental Biology: Opportunities for New Insights Using Genomics. Comp Biochem Physiol Part D Genomics Proteomics. 2007;2:257–286. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources