MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis
- PMID: 20364122
- PMCID: PMC2914488
- DOI: 10.1038/nature08889
MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis
Erratum in
- Nature. 2010 Sep 16;467(7313):356
Abstract
Within the circulatory system, blood flow regulates vascular remodelling, stimulates blood stem cell formation, and has a role in the pathology of vascular disease. During vertebrate embryogenesis, vascular patterning is initially guided by conserved genetic pathways that act before circulation. Subsequently, endothelial cells must incorporate the mechanosensory stimulus of blood flow with these early signals to shape the embryonic vascular system. However, few details are known about how these signals are integrated during development. To investigate this process, we focused on the aortic arch (AA) blood vessels, which are known to remodel in response to blood flow. By using two-photon imaging of live zebrafish embryos, we observe that flow is essential for angiogenesis during AA development. We further find that angiogenic sprouting of AA vessels requires a flow-induced genetic pathway in which the mechano-sensitive zinc finger transcription factor klf2a induces expression of an endothelial-specific microRNA, mir-126, to activate Vegf signalling. Taken together, our work describes a novel genetic mechanism in which a microRNA facilitates integration of a physiological stimulus with growth factor signalling in endothelial cells to guide angiogenesis.
Figures




Comment in
-
Thanks be to zebrafish.Circ Res. 2010 Sep 3;107(5):570-2. doi: 10.1161/RES.0b013e3181f6c515. Circ Res. 2010. PMID: 20814025 No abstract available.
References
-
- Yashiro K, Shiratori H, Hamada H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature. 2007;450:285–8. - PubMed
-
- Gimbrone MA, Jr., Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000;902:230–9. discussion 239-40. - PubMed
-
- le Noble F, Klein C, Tintu A, Pries A, Buschmann I. Neural guidance molecules, tip cells, and mechanical factors in vascular development. Cardiovasc Res. 2008;78:232–41. - PubMed
-
- Dekker RJ, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood. 2002;100:1689–98. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials