Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jun 4;30(22):5531-8.
doi: 10.1021/bi00236a028.

Importance of hydrogen-bonding interactions involving the side chain of Asp158 in the catalytic mechanism of papain

Affiliations

Importance of hydrogen-bonding interactions involving the side chain of Asp158 in the catalytic mechanism of papain

R Ménard et al. Biochemistry. .

Abstract

In a previous study, it was shown that replacing Asp158 in papain by Asn had little effect on activity and that the negatively charged carboxylate of Asp158 does not significantly stabilize the active site thiolate-imidazolium ion pair of papain (Ménard et al., 1990). In this paper, we report the kinetic characterization of three more mutants at this position: Asp158Gly, Asp158Ala, and Asp158Glu. From the pH-activity profiles of these and other mutants of papain, it has been possible to develop a model that enables us to dissect out the contribution of the various mutations toward (i) intrinsic activity, (ii) ion pair stability, and (iii) the electrostatic potential at the active site. Results obtained with mutants that place either Gly or Ala at position 158 indicate that the hydrogen bonds involving the side chain of Asp158 in wild-type papain are indirectly important for enzyme activity. When CBZ-Phe-Arg-MCA is used as a substrate, the (kcat/KM)obs values at pH 6.5 are 3650 and 494 M-1 s-1 for Asp158Gly and Asp158Ala, respectively, as compared to 119,000 M-1 s-1 for papain. Results with the Asp158Glu mutant suggest that the side chain of Glu moves closer to the active site and cannot form hydrogen bonds similar to those involving Asp158 in papain. From the four mutations introduced at position 158 in papain, we can conclude that it is not the charge but the hydrogen-bonding interactions involving the side chain of Asp158 that contribute the most to the stabilization of the thiolate-imidazolium ion pair in papain. However, the charge and the hydrogen bonds of Asp158 both contribute to the intrinsic activity of the enzyme.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources