Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug;15(6):919-27.
doi: 10.1007/s00775-010-0654-x. Epub 2010 Apr 6.

Metabolization of [Ru(eta(6)-C (6)H (5)CF (3))(pta)Cl (2)]: a cytotoxic RAPTA-type complex with a strongly electron withdrawing arene ligand

Affiliations

Metabolization of [Ru(eta(6)-C (6)H (5)CF (3))(pta)Cl (2)]: a cytotoxic RAPTA-type complex with a strongly electron withdrawing arene ligand

Alexander E Egger et al. J Biol Inorg Chem. 2010 Aug.

Abstract

The anticancer ruthenium-arene compound [Ru(eta(6)-C(6)H(5)CF(3))(pta)Cl(2)] (where pta is 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane), termed RAPTA-CF3, with the electron-withdrawing alpha,alpha,alpha-trifluorotoluene ligand, is one of the most cytotoxic RAPTA compounds known. To rationalize the high observed cytotoxicity, the hydrolysis of RAPTA-CF3 in water and brine (100 mM sodium chloride) and its reactions with the protein ubiquitin and a double-stranded oligonucleotide (5'-GTATTGGCACGTA-3') were studied using NMR spectroscopy, high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and gel electrophoresis. The aquation of the ruthenium-chlorido complex was accompanied by a loss of the arene ligand, independent of the chloride concentration, which is a special property of the compound not observed for other ruthenium-arene complexes with relatively stable ruthenium-arene bonds. Accordingly, the mass spectra of the biomolecule reaction mixtures contained mostly [Ru(pta)]-biomolecule adducts, whereas [Ru(pta)(arene)] adducts typical of other RAPTA compounds were not observed in the protein or DNA binding studies. Gel electrophoresis experiments revealed a significant degree of decomposition of the oligonucleotide, which was more pronounced in the case of RAPTA-CF3 compared with RAPTA-C. Consequently, facile arene loss appears to be responsible for the increased cytotoxicity of RAPTA-CF3.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Chem Asian J. 2008 Nov 13;3(11):1890-9 - PubMed
    1. Chem Soc Rev. 2009 Feb;38(2):391-401 - PubMed
    1. Chem Rev. 2006 Jun;106(6):2224-48 - PubMed
    1. J Inorg Biochem. 2008 Sep;102(9):1743-8 - PubMed
    1. Chemistry. 2009 Nov 16;15(45):12283-91 - PubMed

Publication types

MeSH terms

LinkOut - more resources