Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;80(6 Pt 1):061909.
doi: 10.1103/PhysRevE.80.061909. Epub 2009 Dec 14.

Length-dependent force characteristics of coiled coils

Affiliations
Free article

Length-dependent force characteristics of coiled coils

Sara Sadeghi et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec.
Free article

Abstract

Coiled-coil domains within and between proteins play important structural roles in biology. They consist of two or more alpha helices that form a superhelical structure due to packing of the hydrophobic residues that pattern each helix. A recent continuum model showed that the correspondence between the chirality of the pack to that of the underlying hydrophobic pattern comes about because of the internal deformation energy associated with each helix in forming the superhelix. We have developed a coarse-grained atomistic model for coiled coils that includes the competition between the hydrophobic energy that drives folding and the cost due to deforming each helix. The model exhibits a structural transition from a non-coiled-coil to coiled-coil state as the contribution from the deformation energy changes. Our model is able to reproduce naturally occurring coiled coils and essential features seen in unzipping experiments. We explore the force-extension properties of these model coiled coils as a function helix length and find that shorter coils unfold at lower force than longer ones with the required unfolding force eventually becoming length independent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources