Voltage-induced bending and electromechanical coupling in lipid bilayers
- PMID: 20365770
- DOI: 10.1103/PhysRevE.81.031907
Voltage-induced bending and electromechanical coupling in lipid bilayers
Abstract
The electrical properties of the cellular membrane are important for ion transport across cells and electrophysiology. Plasma membranes also resist bending and stretching, and mechanical properties of the membrane influence cell shape and forces in membrane tethers pulled from cells. There exists a coupling between the electrical and mechanical properties of the membrane. Previous work has shown that applied voltages can induce forces and movements in the lipid bilayer. We present a theory that computes membrane bending deformations and forces as the applied voltage is changed. We discover that electromechanical coupling in lipid bilayers depends on the voltage-dependent adsorption of ions into the region occupied by the phospholipid head groups. A simple model of counter-ion absorption is investigated. We show that electromechanical coupling can be measured using membrane tethers and we use our model to predict the membrane tether tension as a function of applied voltage. We also discuss how electromechanical coupling in membranes may influence transmembrane protein function.
Similar articles
-
Electromechanical effects on tether formation from lipid membranes: a theoretical analysis.Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041926. doi: 10.1103/PhysRevE.72.041926. Epub 2005 Oct 25. Phys Rev E Stat Nonlin Soft Matter Phys. 2005. PMID: 16383439
-
Planar lipid bilayers: observing pore creation and extinction.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:746-9. doi: 10.1109/IEMBS.2011.6090170. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22254418
-
Tube formation and spontaneous budding in a fluid charged membrane.Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041930. doi: 10.1103/PhysRevE.72.041930. Epub 2005 Oct 27. Phys Rev E Stat Nonlin Soft Matter Phys. 2005. PMID: 16383443
-
Validating lipid force fields against experimental data: Progress, challenges and perspectives.Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1556-65. doi: 10.1016/j.bbamem.2016.01.029. Epub 2016 Feb 3. Biochim Biophys Acta. 2016. PMID: 26850737 Review.
-
Modelling of proteins in membranes.Chem Phys Lipids. 2006 Jun;141(1-2):2-29. doi: 10.1016/j.chemphyslip.2006.02.024. Epub 2006 Mar 27. Chem Phys Lipids. 2006. PMID: 16620797 Review.
Cited by
-
On the Coupling between Mechanical Properties and Electrostatics in Biological Membranes.Membranes (Basel). 2021 Jun 28;11(7):478. doi: 10.3390/membranes11070478. Membranes (Basel). 2021. PMID: 34203412 Free PMC article. Review.
-
Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer.J Neurosci. 2016 Mar 9;36(10):2945-56. doi: 10.1523/JNEUROSCI.3011-15.2016. J Neurosci. 2016. PMID: 26961949 Free PMC article.
-
The potential and electric field in the cochlear outer hair cell membrane.Med Biol Eng Comput. 2015 May;53(5):405-13. doi: 10.1007/s11517-015-1248-0. Epub 2015 Feb 17. Med Biol Eng Comput. 2015. PMID: 25687712 Free PMC article.
-
Flexoelectricity in Biological Materials and Its Potential Applications in Biomedical Research.Bioengineering (Basel). 2025 May 28;12(6):579. doi: 10.3390/bioengineering12060579. Bioengineering (Basel). 2025. PMID: 40564396 Free PMC article. Review.
-
Piezoelectric nanoribbons for monitoring cellular deformations.Nat Nanotechnol. 2012 Sep;7(9):587-93. doi: 10.1038/nnano.2012.112. Epub 2012 Jul 15. Nat Nanotechnol. 2012. PMID: 22796742