Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 12;104(6):066406.
doi: 10.1103/PhysRevLett.104.066406. Epub 2010 Feb 11.

Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity

Affiliations
Free article

Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity

Thereza Paiva et al. Phys Rev Lett. .
Free article

Abstract

One of the major challenges in realizing antiferromagnetic and superfluid phases in optical lattices is the ability to cool fermions. We determine constraints on the entropy for observing these phases in two-dimensional Hubbard models using determinantal quantum Monte Carlo simulations. We find that an entropy per particle approximately = ln2 is sufficient to observe the insulating gap in the repulsive Hubbard model at half-filling, or the pairing pseudogap in the attractive case. Observing antiferromagnetic correlations or superfluidity in 2D systems requires a further reduction in entropy by a factor of 3 or more. In contrast with higher dimensions, we find that adiabatic cooling is not useful to achieve the required low temperatures. We also show that double-occupancy measurements are useful for thermometry for temperatures greater than the nearest-neighbor hopping energy.

PubMed Disclaimer

LinkOut - more resources