Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 15;13(6):769-81.
doi: 10.1089/ars.2009.2977.

Neuroglobin overexpression in cultured human neuronal cells protects against hydrogen peroxide insult via activating phosphoinositide-3 kinase and opening the mitochondrial K(ATP) channel

Affiliations

Neuroglobin overexpression in cultured human neuronal cells protects against hydrogen peroxide insult via activating phosphoinositide-3 kinase and opening the mitochondrial K(ATP) channel

Shane T Antao et al. Antioxid Redox Signal. .

Abstract

Cultured neurons tolerate low H(2)O(2) concentrations (< or =50 microM) through the activity of constitutive antioxidant response elements (ARE). At H(2)O(2) levels (> or =100 microM), neurons increase expression of the gene encoding for inducible hemoxygenase-1 while superoxide dismutase-2 and catalase remain unchanged. Despite this adaptive response, the endogenous antioxidant systems are overwhelmed, leading to decreased viability. Elevating the neuronal cell content of human neuroglobin (Ngb) prior to insult with 100 or 200 microM H(2)O(2) enhanced cell viability and this resulted in a significant decrease in oxidative stress and an increase in the intracellular ATP concentration, whereas in parental cells exposed to the same H(2)O(2)-insult, oxidative stress and ATP increased and decreased, respectively. The mechanism for this increase in ATP involves sustained activation of the mito-K(ATP) channel and an increase in phosphoinositide-3 kinase (PI3K)-mediated phosphorylation of Akt. Pharmacological inhibitors directed toward PI3K (wortmannin and LY294002), or the mito-K(ATP) channel (glybenclamide) inhibited the H(2)O(2)-mediated increase in ATP in cells overexpressing human Ngb and consequently cell viability decreased. Neuroglobin's ability to bolster the intracellular pool of ATP in response to added H(2)O(2) is central to the preservation of cytoskeletal integrity and cell viability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources