Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991;18(5):341-68.

Receptors in the knee joint ligaments and their role in the biomechanics of the joint

Affiliations
  • PMID: 2036801
Review

Receptors in the knee joint ligaments and their role in the biomechanics of the joint

H Johansson et al. Crit Rev Biomed Eng. 1991.

Abstract

The knee joint ligaments contain Ruffini, Pacinian, Golgi, and free-nerve endings with different capabilities of providing the CNS with information about movement and position as well as about noxious events. Skeletomotor neurons (alpha-motoneurons) are known to be influenced only very rarely and weakly from low-threshold mechanoreceptors in the ligaments, while the effects on the tau-muscle-spindle system in the muscles around the knee are so potent that even ligament stretches at very low loads may induce major changes in the responses of the muscle spindle afferents. Since the primary muscle spindle afferents participate in the regulation of muscular stiffness, the receptors in the knee joint ligaments probably contribute, via the tau-muscle-spindle system, to preparatory adjustment (pre-setting) of the stiffness of the muscles around the knee joint, and thereby to the joint stiffness and the functional joint stability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources