Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases
- PMID: 20368441
- PMCID: PMC2867705
- DOI: 10.1073/pnas.0913482107
Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases
Abstract
The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs) that are structurally related to eukaryotic kinases. To gain insight into the role of Ser/Thr phosphorylation in this major global pathogen, we used a phosphoproteomic approach to carry out an extensive analysis of protein phosphorylation in M. tuberculosis. We identified more than 500 phosphorylation events in 301 proteins that are involved in a broad range of functions. Bioinformatic analysis of quantitative in vitro kinase assays on peptides containing a subset of these phosphorylation sites revealed a dominant motif shared by six of the M. tuberculosis STPKs. Kinase assays on a second set of peptides incorporating targeted substitutions surrounding the phosphoacceptor validated this motif and identified additional residues preferred by individual kinases. Our data provide insight into processes regulated by STPKs in M. tuberculosis and create a resource for understanding how specific phosphorylation events modulate protein activity. The results further provide the potential to predict likely cognate STPKs for newly identified phosphoproteins.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Deutscher J, Saier MH., Jr Ser/Thr/Tyr protein phosphorylation in bacteria—for long time neglected, now well established. J Mol Microbiol Biotechnol. 2005;9:125–131. - PubMed
-
- Wehenkel A, et al. Mycobacterial Ser/Thr protein kinases and phosphatases: Physiological roles and therapeutic potential. Biochim Biophys Acta. 2008;1784:193–202. - PubMed
-
- Kang CM, Nyayapathy S, Lee JY, Suh JW, Husson RN. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology. 2008;154:725–735. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
