Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 28;132(16):5858-68.
doi: 10.1021/ja1009025.

Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst

Affiliations

Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst

Kazuhiko Maeda et al. J Am Chem Soc. .

Abstract

A two-step photocatalytic water splitting (Z-scheme) system consisting of a modified ZrO(2)/TaON species (H(2) evolution photocatalyst), an O(2) evolution photocatalyst, and a reversible donor/acceptor pair (i.e., redox mediator) was investigated. Among the O(2) evolution photocatalysts and redox mediators examined, Pt-loaded WO(3) (Pt/WO(3)) and the IO(3)(-)/I(-) pair were respectively found to be the most active components. Combining these two components with Pt-loaded ZrO(2)/TaON achieved stoichiometric water splitting into H(2) and O(2) under visible light, achieving an apparent quantum yield of 6.3% under irradiation by 420.5 nm monochromatic light under optimal conditions, 6 times greater than the yield achieved using a TaON analogue. To the best of our knowledge, this is the highest reported value to date for a nonsacrificial visible-light-driven water splitting system. The high activity of this system is due to the efficient reaction of electron donors (I(-) ions) and acceptors (IO(3)(-) ions) on the Pt/ZrO(2)/TaON and Pt/WO(3) photocatalysts, respectively, which suppresses undesirable reverse reactions involving the redox couple that would otherwise occur on the photocatalysts. Photoluminescence and photoelectrochemical measurements indicated that the high activity of this Z-scheme system results from the moderated n-type semiconducting character of ZrO(2)/TaON, which results in a lower probability of undesirable electron-hole recombination in ZrO(2)/TaON than in TaON.

PubMed Disclaimer

LinkOut - more resources