Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;30(2):167-87.
doi: 10.1615/critrevimmunol.v30.i2.50.

Mode of action of botulinum neurotoxins: current vaccination strategies and molecular immune recognition

Affiliations
Review

Mode of action of botulinum neurotoxins: current vaccination strategies and molecular immune recognition

K Roger Aoki et al. Crit Rev Immunol. 2010.

Abstract

The action of a botulinum neurotoxin (BoNT) commences by binding at the nerve terminal via its H- (heavy) chain to a cell-surface receptor, which consists of a ganglioside and a cell-surface protein. Binding enables the L-chain, a Zn2+-dependent endopeptidase, to be internalized and act intracellularly, cleaving one or more SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins required for vesicle docking and fusion, which results in reduced neurotransmitter release. Sprouts emerge at motor-nerve terminals that reestablish synaptic contact and lead to restoration of exocytosis. As the terminals recover, sprouts retreat and synaptic function is fully re-established. Neutralizing antibodies (Abs) induced by vaccination can prevent the neuronal changes produced by BoNT. Until recently, vaccines against BoNT have been based on toxins inactivated by treatment with formaldehyde (toxoids) and contain either one (monovalent) or five (pentavalent) toxoids, but formalin-based toxoids have many undesirable side effects. Availability of the gene sequences of BoNT serotypes enabled design of recombinant subunit vaccines that have included the C-terminal domain of the H chain (HC, its subdomains (HC-N and HC-C), the L- (catalytic) chain, and the L-chain expressed with the translocation domain (LCHN). Of these, the HC displays the highest protective ability. Recent vaccines have used whole toxins inactivated by three key mutations at the enzyme active site, which have been found to be very effective in mice against the correlated toxin. Immune responses to BoNTs A and B epitopes are under the hosts MHC (major histocompatibility complex) control. Anti-BoNT/A blocking Abs bind at sites that coincide or overlap with those that bind synaptosomes and to BoNT/B at sites that overlap with synaptotagmin-II and ganglioside-binding sites. Therefore, locations occupied by blocking Abs preclude the respective toxin from binding to its receptor and thus from binding to cell surface. Information on BoNT epitopes for blocking Abs, sites for binding to cell surface receptors, and T-cell epitopes that provide help to B cells making blocking Abs afford a prospect for rational design of stable synthetic vaccines. These constructs should be clinically useful for epitope-selective modulation of Ab responses to restore effective BoNT treatment in immunoresistant patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms