Preclinical characterization of atiprimod, a novel JAK2 AND JAK3 inhibitor
- PMID: 20372971
- PMCID: PMC4170651
- DOI: 10.1007/s10637-010-9429-z
Preclinical characterization of atiprimod, a novel JAK2 AND JAK3 inhibitor
Abstract
We herein report on the activity of the JAK2/JAK3 small molecule inhibitor atiprimod on mouse FDCP-EpoR cells carrying either wild-type (JAK2 (WT)) or mutant (JAK2 (V617F)) JAK2, human acute megakaryoblastic leukemia cells carrying JAK2 (V617F) (SET-2 cell line), and human acute megakaryocytic leukemia carrying mutated JAK3 (CMK cells). Atiprimod inhibited more efficaciously the proliferation of FDCP-EpoR JAK2 (V617F) (IC(50) 0.42 μM) and SET-2 cells (IC(50) 0.53 μM) than that of CMK (IC(50) 0.79 μM) or FDCP-EpoR JAK2 (WT) cells (IC(50) 0.69 μM). This activity was accompanied by inhibition of the phosphorylation of JAK2 and downstream signaling proteins STAT3, STAT5, and AKT in a dose- and time-dependent manner. Atiprimod-induced cell growth inhibition of JAK2 (V617F)-positive cells was coupled with induction of apoptosis, as evidenced by heightened mitochondrial membrane potential and caspase-3 activity, as well as PARP cleavage, increased turnover of the anti-apoptotic X-linked mammalian inhibitor of apoptosis (XIAP) protein, and inhibition of the pro-apoptotic protein BCL-2 in a time- and dose-dependent manner. Furthermore, atiprimod was more effective at inhibiting the proliferation of peripheral blood hematopoietic progenitors obtained from patients with JAK2 (V617F)-positive polycythemia vera than at inhibiting hematopoietic progenitors from normal individuals (p = 0.001). The effect on primary expanded erythroid progenitors was paralleled by a decrease in JAK2(V617F) mutant allele burden in single microaspirated BFU-E and CFU-GM colonies. Taken together, our data supports the clinical testing of atiprimod in patients with hematologic malignancies driven by constitutive activation of JAK2 or JAK3 kinases.
Figures
References
-
- Spivak JL. The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin Hematol. 2004;41:1–5. - PubMed
-
- James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. - PubMed
-
- Lucet IS, Fantino E, Styles M, et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood. 2006;107:176–183. - PubMed
-
- Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med. 1998;338:564–571. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
