Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Apr;171(4):511-23.
doi: 10.1086/528967.

Nutrient recycling affects autotroph and ecosystem stoichiometry

Affiliations
Comparative Study

Nutrient recycling affects autotroph and ecosystem stoichiometry

Ford Ballantyne 4th et al. Am Nat. 2008 Apr.

Abstract

Stoichiometric nutrient ratios are the consequence of myriad interacting processes, both biotic and abiotic. Theoretical explanations for autotroph stoichiometry have focused on species' nutrient requirements but have not addressed the role of nutrient availability in determining autotroph stoichiometry. Remineralization of organic N and P supplies a significant fraction of inorganic N and P to autotrophs, making nutrient recycling a potentially important process influencing autotroph stoichiometry. To quantitatively investigate the relationship between available N and P, autotroph N:P, and nutrient recycling, we analyze a stoichiometrically explicit model of autotroph growth, incorporating Michaelis-Menten-Monod nutrient uptake kinetics, Droop growth, and Liebig's law of the minimum. If autotroph growth is limited by a single nutrient, increased recycling of the limiting nutrient pushes autotrophs toward colimitation and alters both autotroph and environmental stoichiometry. We derive a steady state relationship between input stoichiometry, autotroph N:P, and the stoichiometry of organic losses that allows us to estimate the relative recycling of N to P within an ecosystem. We then estimate relative N and P recycling for a marine, an aquatic, and two terrestrial ecosystems. Preferential P recycling, in conjunction with greater relative P retention at the organismal and ecosystem levels, presents a strong case for the importance of P to biomass production across ecosystems.

PubMed Disclaimer

Publication types

LinkOut - more resources