Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jul;37(7):736-42.
doi: 10.1111/j.1440-1681.2010.05387.x. Epub 2010 Mar 30.

Anti-atherogenic effects of high-density lipoprotein on nitric oxide synthesis in the endothelium

Affiliations
Review

Anti-atherogenic effects of high-density lipoprotein on nitric oxide synthesis in the endothelium

Karen L Andrews et al. Clin Exp Pharmacol Physiol. 2010 Jul.

Abstract

1. The endothelium is critical in the control of vascular haemodynamics and haemostasis. Endothelial dysfunction, typically characterized by decreased nitric oxide bioavailability and response to endothelium-dependent agonists, is well accepted as a defining characteristic of early atherosclerosis. 2. Numerous epidemiological studies have reported that increased levels of circulating HDL are vasculoprotective and reduce the incidence of adverse cardiovascular events. Traditionally, these effects have been attributed to the ability of HDL to remove cholesterol from cells via reverse cholesterol transport. However, there is increasing evidence that the beneficial effects on the endothelium by HDL encompass its anti-inflammatory, antithrombotic and anti-oxidative properties, which include the release of nitric oxide (NO). 3. This review highlights recent findings on the importance of HDL in reducing atherosclerotic risk. We focus on the beneficial effects of HDL-induced NO release and how this relates to endothelial dysfunction and on the effect of HDL on vascular repair via endothelial progenitor cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources