Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb 1;13(1):3-11.
doi: 10.1111/j.1756-185X.2009.01458.x.

The immunological basis of B-cell therapy in systemic lupus erythematosus

Affiliations
Review

The immunological basis of B-cell therapy in systemic lupus erythematosus

Mo Yin Mok. Int J Rheum Dis. .

Abstract

Loss of B-cell tolerance is a hallmark feature of the pathogenesis in systemic lupus erythematosus (SLE), an autoimmune disease that is characterized by hypergammaglobulinemia and autoantibody production. These autoantibodies lead to formation of immune-complex deposition in internal organs causing inflammation and damage. Autoreactive B-cells are believed to be central in the pathophysiology of SLE. Other than its role in the production of antibodies that mediate humoral immune response, B-cells also function as antigen-presenting cells and are capable of activating T-cells. Activated B-cells may also produce pro-inflammatory cytokines that aggravate local inflammation. Abnormal B-cell homeostasis has been described in SLE patients. This may occur as a result of intrinsic B-cell defect or from aberrant regulation by maturation and survival signals. B-cell-based therapy is the current mainstream of research and development of novel therapies in SLE patients with severe and refractory disease. Potential cellular and molecular targets for B-cell therapies include cell surface molecules such as CD20 (rituximab) and CD22 (epratuzumab); co-stimulatory molecules involved in B-cell-T-cell interaction such as CTLA4 and B7 molecules (abatacept); maturation and growth factors such as B-cell activating factor and a proliferation-inducing ligand (belimumab, briobacept, atacicept) and B-cell tolerogen (abetimus). This article provides an overview on normal B-cell physiology and abnormal B-cell biology in SLE that form the immunological basis of B-cell-targeted therapy in the treatment of these patients with refractory diseases.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources