FastEpistasis: a high performance computing solution for quantitative trait epistasis
- PMID: 20375113
- PMCID: PMC2872003
- DOI: 10.1093/bioinformatics/btq147
FastEpistasis: a high performance computing solution for quantitative trait epistasis
Abstract
Motivation: Genome-wide association studies have become widely used tools to study effects of genetic variants on complex diseases. While it is of great interest to extend existing analysis methods by considering interaction effects between pairs of loci, the large number of possible tests presents a significant computational challenge. The number of computations is further multiplied in the study of gene expression quantitative trait mapping, in which tests are performed for thousands of gene phenotypes simultaneously.
Results: We present FastEpistasis, an efficient parallel solution extending the PLINK epistasis module, designed to test for epistasis effects when analyzing continuous phenotypes. Our results show that the algorithm scales with the number of processors and offers a reduction in computation time when several phenotypes are analyzed simultaneously. FastEpistasis is capable of testing the association of a continuous trait with all single nucleotide polymorphism (SNP) pairs from 500 000 SNPs, totaling 125 billion tests, in a population of 5000 individuals in 29, 4 or 0.5 days using 8, 64 or 512 processors.
Availability: FastEpistasis is open source and available free of charge only for non-commercial users from http://www.vital-it.ch/software/FastEpistasis.
Similar articles
-
Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies.BMC Bioinformatics. 2008 Jul 21;9:315. doi: 10.1186/1471-2105-9-315. BMC Bioinformatics. 2008. PMID: 18644146 Free PMC article.
-
Potpourri: An Epistasis Test Prioritization Algorithm via Diverse SNP Selection.J Comput Biol. 2021 Apr;28(4):365-377. doi: 10.1089/cmb.2020.0429. Epub 2020 Dec 3. J Comput Biol. 2021. PMID: 33275856
-
EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits.Bioinformatics. 2014 Jun 15;30(12):i19-25. doi: 10.1093/bioinformatics/btu261. Bioinformatics. 2014. PMID: 24931983 Free PMC article.
-
Review on GPU accelerated methods for genome-wide SNP-SNP interactions.Mol Genet Genomics. 2024 Dec 29;300(1):10. doi: 10.1007/s00438-024-02214-6. Mol Genet Genomics. 2024. PMID: 39738695 Review.
-
New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation.Annu Rev Genet. 2020 Nov 23;54:287-307. doi: 10.1146/annurev-genet-050720-122916. Epub 2020 Sep 1. Annu Rev Genet. 2020. PMID: 32870731 Review.
Cited by
-
Genetic architecture of natural variation of cardiac performance from flies to humans.Elife. 2022 Nov 16;11:e82459. doi: 10.7554/eLife.82459. Elife. 2022. PMID: 36383075 Free PMC article.
-
iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies.BMC Genomics. 2012;13 Suppl 7(Suppl 7):S2. doi: 10.1186/1471-2164-13-S7-S2. Epub 2012 Dec 13. BMC Genomics. 2012. PMID: 23281813 Free PMC article.
-
A multi-omics digital research object for the genetics of sleep regulation.Sci Data. 2019 Oct 31;6(1):258. doi: 10.1038/s41597-019-0171-x. Sci Data. 2019. PMID: 31672980 Free PMC article.
-
Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals.Heredity (Edinb). 2018 Jun;120(6):500-514. doi: 10.1038/s41437-017-0043-0. Epub 2018 Feb 10. Heredity (Edinb). 2018. PMID: 29426878 Free PMC article.
-
Genetic variants and their interactions in disease risk prediction - machine learning and network perspectives.BioData Min. 2013 Mar 1;6(1):5. doi: 10.1186/1756-0381-6-5. BioData Min. 2013. PMID: 23448398 Free PMC article.
References
-
- Franke L, et al. eQTL analysis in humans. Meth. Mol. Biol. 2009;573:311–328. - PubMed