Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;2(1):17-23.
doi: 10.1159/000233475. Epub 2009 Aug 6.

Structural insights into the recognition properties of human ficolins

Affiliations
Free article
Review

Structural insights into the recognition properties of human ficolins

Virginie Garlatti et al. J Innate Immun. 2010.
Free article

Abstract

Innate immunity relies upon the ability of a variety of recognition molecules to sense pathogens through conserved molecular signatures that are often carbohydrates. Ficolins are oligomeric proteins assembled from collagen-like stalks and fibrinogen-like domains that have the ability to sense these molecular patterns on both pathogens and apoptotic cell surfaces. Three ficolins, termed L, H and M, have been identified in humans. They differ in their localization and concentration in extracellular fluids, their mode of secretion and their recognition properties. From a structural point of view, ficolins are assembled from basal trimeric subunits comprising a collagen-like triple helix and a globular domain composed of 3 fibrinogen-like domains. The globular domains are responsible for sensing danger signals whereas the collagen-like stalks provide a link with immune effectors. This review mainly focuses on the structure and recognition properties of the 3 human ficolins, as revealed by recent crystallographic analysis of their recognition domains. The ligand binding sites have been identified in the 3 ficolins and their recognition mechanisms have been characterized at the atomic level. In the case of M-ficolin, a structural transition at acidic pH disables the binding pocket, and thus likely participates in the functional cycle of this protein.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources