Effects of (-)-epigallocatechin gallate on RPE cell migration and adhesion
- PMID: 20376327
 - PMCID: PMC2848918
 
Effects of (-)-epigallocatechin gallate on RPE cell migration and adhesion
Abstract
Purpose: In diseases such as proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy (PDR), and age-related macular degeneration (AMD), retinal pigment epithelial (RPE) cells can initiate proliferation and migration and secrete extracellular matrix (ECM) proteins. (-)-Epigallocatechin gallate (EGCG)-a natural anti-oxidant flavonoid that is abundant in green tea-has been shown to suppress the migration and adhesion of many cell types, but its effects on RPE cell migration and adhesion were unknown. Several studies have shown that platelet-derived growth factor (PDGF) enhances proliferation and migration effects on RPE cells in PVR, and that fibronectin is a major ECM component of PVR tissue. Therefore, we investigated the inhibitory effects of EGCG on RPE cell migration induced by PDGF-BB, an isoform of PDGF, and adhesion by fibronectin.
Methods: The migration of RPE cells was detected by an electric cell-substrate impedance sensing (ECIS) migration assay and a Transwell migration assay. Cells were loaded with 2',7'-bis-(carboxyethyl)-5(6')-carboxyfluorescein acetoxymethyl ester (BCECF/AM), and their adhesion to fibronectin was examined. The interactions of EGCG with PDGF-BB were analyzed by a dot binding assay. Cytoskeletal reorganization was examined by immunofluorescence microscopy. The PDGF-BB-induced signaling pathways were detected by western blotting.
Results: In the present study, we find that EGCG can inhibit PDGF-BB-induced human RPE cell migration and, in a dose-dependent manner, RPE cell adhesion to fibronectin. Our analysis demonstrates that EGCG does not directly bind to PDGF-BB and the inhibition of EGCG against fibronectin-induced cytoskeletal reorganization is observed. Furthermore, EGCG is shown to suppress PDGF-BB-induced PDGF-beta receptors, downstream PI3K/Akt, and MAPK phosphorylation.
Conclusions: Our results provide the first evidence that EGCG is an effective inhibitor of RPE cell migration and adhesion to fibronectin and, therefore, may prevent epiretinal membrane formation.
Figures
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                
              
              
              
              
                
                
                References
- 
    
- Campochiaro PA. Pathogenic mechanisms in proliferative vitreoretinopathy. Arch Ophthalmol. 1997;115:237–41. - PubMed
 
 - 
    
- Esser P, Heimann K, Bartz-schmidt KU, Fontana A, Schraermeyer U, Thumann G, Weller M. Apoptosis in proliferative vitreoretinal disorders: possible involvement of TGF-beta-induced RPE cell apoptosis. Exp Eye Res. 1997;65:365–78. - PubMed
 
 - 
    
- Miller H, Miller B, Ryan SJ. The role of retinal pigment epithelium in the involution of subretinal neovascularization. Invest Ophthalmol Vis Sci. 1986;27:1644–52. - PubMed
 
 - 
    
- Abe T, Durlu YK, Tamai M. The properties of retinal pigment epithelial cells in proliferative vitreoretinopathy compared with cultured retinal pigment epithelial cells. Exp Eye Res. 1996;63:201–10. - PubMed
 
 - 
    
- Limb GA, Little BC, Meager A, Ogilvie JA, Wolstencroft RA, Franks WA, Chignell AH, Dumonde DC. Cytokines in proliferative vitreoretinopathy. Eye. 1991;5:686–93. - PubMed
 
 
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous