Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;79(8):779-85.
doi: 10.1016/j.chemosphere.2010.03.020. Epub 2010 Apr 7.

Adsorption and transformation of tetracycline antibiotics with aluminum oxide

Affiliations

Adsorption and transformation of tetracycline antibiotics with aluminum oxide

Wan-Ru Chen et al. Chemosphere. 2010 May.

Abstract

Tetracycline antibiotics (TCs) including tetracycline (TTC), chlorotetracycline (CTC) and oxytetracycline (OTC) adsorb strongly to aluminum oxide (Al(2)O(3)), and the surface interaction promotes structural transformation of TCs. The latter phenomenon was not widely recognized previously. Typically, rapid adsorption of TCs to Al(2)O(3) occurs in the first 3h ([TC]=40microM, [Al(2)O(3)]=1.78gL(-1), pH=5, and T=22 degrees C), followed by continuous first-order decay of the parent compound (k(obs)=15+/-1.0, 18+/-1.0 and 6.2+/-0.9x10(-3)h(-1) for TTC, CTC and OTC, respectively) and product formation. The transformation reaction rate of TCs strongly correlates with adsorption to Al(2)O(3) surfaces. Both adsorption and transformation occur at the highest rate at around neutral pH conditions. Product evaluation indicates that Al(2)O(3) promotes dehydration of TTC to yield anhydrotetracycline (AHTTC), epimerization of TTC, and formation of Al-TTC complexes. Al(2)O(3) promotes predominantly the transformation of CTC to iso-CTC. The surface-bound Al(+III) acts as a Lewis acid site to promote the above transformation of TCs. Formation of AHTTC is of special concern because of its higher cytotoxicity. Results of this study indicate that aluminum oxide will likely affect the fate of TC antibiotics in the aquatic environment via both adsorption and transformation.

PubMed Disclaimer

Publication types

MeSH terms