A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI
- PMID: 20378466
- DOI: 10.1109/TMI.2010.2047112
A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI
Abstract
Magnetic resonance (MR) imaging has become a routine modality for the determination of patient cardiac morphology. The extraction of this information can be important for the development of new clinical applications as well as the planning and guidance of cardiac interventional procedures. To avoid inter- and intra-observer variability of manual delineation, it is highly desirable to develop an automatic technique for whole heart segmentation of cardiac magnetic resonance images. However, automating this process is complicated by the limited quality of acquired images and large shape variation of the heart between subjects. In this paper, we propose a fully automatic whole heart segmentation framework based on two new image registration algorithms: the locally affine registration method (LARM) and the free-form deformations with adaptive control point status (ACPS FFDs). LARM provides the correspondence of anatomical substructures such as the four chambers and great vessels of the heart, while the registration using ACPS FFDs refines the local details using a constrained optimization scheme. We validated our proposed segmentation framework on 37 cardiac MR volumes on the end-diastolic phase, displaying a wide diversity of morphology and pathology, and achieved a mean accuracy of 2.14 +/- 0.63 mm (rms surface distance) and a maximal error of 4.31 mm.
Similar articles
-
Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images.J Magn Reson Imaging. 2008 Jan;27(1):86-93. doi: 10.1002/jmri.21236. J Magn Reson Imaging. 2008. PMID: 18050352
-
A nonrigid registration framework using spatially encoded mutual information and free-form deformations.IEEE Trans Med Imaging. 2011 Oct;30(10):1819-28. doi: 10.1109/TMI.2011.2150240. Epub 2011 May 5. IEEE Trans Med Imaging. 2011. PMID: 21550878
-
Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images.Phys Med Biol. 2010 Feb 21;55(4):1127-40. doi: 10.1088/0031-9155/55/4/015. Epub 2010 Jan 28. Phys Med Biol. 2010. PMID: 20107252
-
Current methods in medical image segmentation.Annu Rev Biomed Eng. 2000;2:315-37. doi: 10.1146/annurev.bioeng.2.1.315. Annu Rev Biomed Eng. 2000. PMID: 11701515 Review.
-
MRI segmentation: methods and applications.Magn Reson Imaging. 1995;13(3):343-68. doi: 10.1016/0730-725x(94)00124-l. Magn Reson Imaging. 1995. PMID: 7791545 Review.
Cited by
-
Automatic basal slice detection for cardiac analysis.J Med Imaging (Bellingham). 2016 Jul;3(3):034004. doi: 10.1117/1.JMI.3.3.034004. Epub 2016 Sep 20. J Med Imaging (Bellingham). 2016. PMID: 27660805 Free PMC article.
-
Learned iterative segmentation of highly variable anatomy from limited data: Applications to whole heart segmentation for congenital heart disease.Med Image Anal. 2022 Aug;80:102469. doi: 10.1016/j.media.2022.102469. Epub 2022 May 13. Med Image Anal. 2022. PMID: 35640385 Free PMC article.
-
Nonrigid 3D medical image registration and fusion based on deformable models.Comput Math Methods Med. 2013;2013:902470. doi: 10.1155/2013/902470. Epub 2013 Apr 18. Comput Math Methods Med. 2013. PMID: 23690883 Free PMC article.
-
Deep learning based fully automatic segmentation of the left ventricular endocardium and epicardium from cardiac cine MRI.Quant Imaging Med Surg. 2021 Apr;11(4):1600-1612. doi: 10.21037/qims-20-169. Quant Imaging Med Surg. 2021. PMID: 33816194 Free PMC article.
-
An Overview on Image Registration Techniques for Cardiac Diagnosis and Treatment.Cardiol Res Pract. 2018 Aug 8;2018:1437125. doi: 10.1155/2018/1437125. eCollection 2018. Cardiol Res Pract. 2018. PMID: 30159169 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical