BoolNet--an R package for generation, reconstruction and analysis of Boolean networks
- PMID: 20378558
- DOI: 10.1093/bioinformatics/btq124
BoolNet--an R package for generation, reconstruction and analysis of Boolean networks
Abstract
Motivation: As the study of information processing in living cells moves from individual pathways to complex regulatory networks, mathematical models and simulation become indispensable tools for analyzing the complex behavior of such networks and can provide deep insights into the functioning of cells. The dynamics of gene expression, for example, can be modeled with Boolean networks (BNs). These are mathematical models of low complexity, but have the advantage of being able to capture essential properties of gene-regulatory networks. However, current implementations of BNs only focus on different sub-aspects of this model and do not allow for a seamless integration into existing preprocessing pipelines.
Results: BoolNet efficiently integrates methods for synchronous, asynchronous and probabilistic BNs. This includes reconstructing networks from time series, generating random networks, robustness analysis via perturbation, Markov chain simulations, and identification and visualization of attractors.
Availability: The package BoolNet is freely available from the R project at http://cran.r-project.org/ or http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/ under Artistic License 2.0.
Contact: hans.kestler@uni-ulm.de
Supplementary information: Supplementary data are available at Bioinformatics online.
Similar articles
-
Generalized Venn diagrams: a new method of visualizing complex genetic set relations.Bioinformatics. 2005 Apr 15;21(8):1592-5. doi: 10.1093/bioinformatics/bti169. Epub 2004 Nov 30. Bioinformatics. 2005. PMID: 15572472
-
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.Bioinformatics. 2006 Oct 15;22(20):2523-31. doi: 10.1093/bioinformatics/btl391. Epub 2006 Jul 14. Bioinformatics. 2006. PMID: 16844710
-
ViSiBooL-visualization and simulation of Boolean networks with temporal constraints.Bioinformatics. 2017 Feb 15;33(4):601-604. doi: 10.1093/bioinformatics/btw661. Bioinformatics. 2017. PMID: 27797768
-
Computational representation of developmental genetic regulatory networks.Dev Biol. 2005 Jul 1;283(1):1-16. doi: 10.1016/j.ydbio.2005.04.023. Dev Biol. 2005. PMID: 15907831 Review.
-
Phenotype Control techniques for Boolean gene regulatory networks.Bull Math Biol. 2023 Aug 30;85(10):89. doi: 10.1007/s11538-023-01197-6. Bull Math Biol. 2023. PMID: 37646851 Free PMC article. Review.
Cited by
-
Unsupervised logic-based mechanism inference for network-driven biological processes.PLoS Comput Biol. 2021 Jun 2;17(6):e1009035. doi: 10.1371/journal.pcbi.1009035. eCollection 2021 Jun. PLoS Comput Biol. 2021. PMID: 34077417 Free PMC article.
-
CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms.BMC Syst Biol. 2012 Oct 18;6:133. doi: 10.1186/1752-0509-6-133. BMC Syst Biol. 2012. PMID: 23079107 Free PMC article.
-
Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies.PeerJ. 2020 Sep 29;8:e9902. doi: 10.7717/peerj.9902. eCollection 2020. PeerJ. 2020. PMID: 33062419 Free PMC article.
-
Network dynamics-based subtyping of Alzheimer's disease with microglial genetic risk factors.Alzheimers Res Ther. 2024 Oct 16;16(1):229. doi: 10.1186/s13195-024-01583-9. Alzheimers Res Ther. 2024. PMID: 39415193 Free PMC article.
-
Identification of dynamic driver sets controlling phenotypical landscapes.Comput Struct Biotechnol J. 2022 Apr 2;20:1603-1617. doi: 10.1016/j.csbj.2022.03.034. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 35465155 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials