Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar 31;2(3):160-5.
doi: 10.18632/aging.100129.

How to become immortal: let MEFs count the ways

Affiliations
Review

How to become immortal: let MEFs count the ways

Adam Odell et al. Aging (Albany NY). .

Abstract

Understanding the molecular mechanisms and biological consequences of genetic changes occurring during bypass of cellular senescence spans a broad area of medical research from the cancer field to regenerative medicine. Senescence escape and immortalisation have been intensively studied in murine embryonic fibroblasts as a model system, and are known to occur when the p53/ARF tumour suppressor pathway is disrupted. We showed recently that murine fibroblasts with a humanised p53 gene (Hupki cells, from a human p53 knock-in mouse model) first senesce, and then become immortalised in the same way as their homologues with normal murine p53. In both cell types, immortalised cultures frequently sustain either a p53 gene mutation matching a human tumour mutation and resulting in loss of p53 transcriptional transactivation, or a biallelic deletion at the p19/ARF locus. Whilst these genetic events were not unexpected, we were surprised to find that a significant proportion of immortalised cell cultures apparently had neither a p53 mutation nor loss of p19/ARF. Here we consider various routes to p53/ARF disruption in senescence bypass, and dysfunction of other tumour suppressor networks that may contribute to release from tenacious cell cycle arrest in senescent cultures.

PubMed Disclaimer

Conflict of interest statement

The authors of this manuscript have no conflict of interest to declare.

Figures

Figure 1.
Figure 1.. The p53/p19ARF status of various MEF lines derived from normal strain 129 mice.
MEF cell lines genotyped as either wild-type (WT) p53 or mutant (MT) p53 (both heterozygous and homozygous) were compared against those carrying the p19/ARF deletion in their response to doxorubicin (8h, 1μM) treatment. Cells were methanol fixed and processed by indirect immunofluorescence confocal microscopy with either the anti-p53 CM5 (Novacastra) or anti-p19/ARF ab80 (AbCam) antibody. Scale bar represents 50μm. All samples were processed at the same intensity and magnification.

Comment in

Similar articles

Cited by

References

    1. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130:223–233. - PubMed
    1. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432:307–315. - PubMed
    1. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 2002;109:335–346. - PubMed
    1. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–660. - PMC - PubMed
    1. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer. 2010;10:51–57. - PMC - PubMed

Substances