Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;7(6):342-51.
doi: 10.1080/15459621003729966.

Personal exposure of traffic police officers to particulate matter, carbon monoxide, and benzene in the city of Milan, Italy

Affiliations

Personal exposure of traffic police officers to particulate matter, carbon monoxide, and benzene in the city of Milan, Italy

Andrea Cattaneo et al. J Occup Environ Hyg. 2010 Jun.

Abstract

The aim of this work was to quantify the personal exposure of traffic police officers to particulate matter (PM), carbon monoxide (CO), benzene, toluene, ethylbenzene, and xylenes. The contributions of some behavioral, occupational, and meteorological determinants of exposure also were evaluated. Personal exposure to airborne contaminants was measured on 130 selected volunteers in four seasonal sampling sessions. CO was measured with high sampling frequency. A time-activity diary was completed by traffic police officers during their work shift. Mean (median) personal exposure levels of carbon monoxide, respirable particles (PM(resp)), and benzene were 3.51 (3.22) mg/m(3), 128 (115) microg/m(3) and 11.5 (9.6) microg/m(3), respectively. The highest ambient mean levels of PM(resp), CO, and benzene were found during cold seasons. Measurements taken where traffic is directed, schools are guarded, and other outdoor tasks are performed showed the highest median CO concentrations. As expected, wind decreased exposure to CO and benzene. Exposure was not significantly affected by active tobacco smoke. A key finding was that airborne concentrations determined by fixed measurement stations reported in other studies greatly underestimated traffic officers' exposure to airborne contaminants. The proximity to an emission source determined by the occupational activity was the factor that most affected exposure. For this reason, fixed stations are poor predictors of roadside exposures to airborne pollutants.

PubMed Disclaimer

Publication types

LinkOut - more resources