Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug;45(7-8):533-42.
doi: 10.1016/j.exger.2010.03.016. Epub 2010 Apr 8.

Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells

Affiliations

Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells

Harald Klinger et al. Exp Gerontol. 2010 Aug.

Abstract

Asymmetric segregation of oxidatively damaged proteins is discussed in the literature as a mechanism in cell division cycles which at the same time causes rejuvenation of the daughter cell and aging of the mother cell. This process must be viewed as cooperating with the cellular degradation processes like autophagy, proteasomal degradation and others. Together, these two mechanisms guarantee survival of the species and prevent clonal senescence of unicellular organisms, like yeast. It is widely believed that oxidative damage to proteins is primarily caused by oxygen radicals and their follow-up products produced in the mitochondria. As we have shown previously, old yeast mother cells in contrast to young cells contain reactive oxygen species and undergo programmed cell death. Here we show that aconitase of the mitochondrial matrix is readily inactivated by oxidative stress, but even in its inactive form is relatively long-lived and retains fluorescence in the Aco1p-eGFP form. The fluorescent protein is distributed between old mothers and their daughters approximately corresponding to the different sizes of mother and daughter cells. However, the remaining active enzyme is primarily inherited by the daughter cells. This indicates that asymmetric distribution of the still active enzyme takes place and a mechanism for discrimination between active and inactive enzyme must exist. As the aconitase remains mitochondrial during aging and cell division, our findings could indicate discrimination between active and no longer active mitochondria during the process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources