Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Oct;19(7):220-6.
doi: 10.1016/j.tcm.2010.01.001.

Xenopus explants as an experimental model system for studying heart development

Affiliations
Review

Xenopus explants as an experimental model system for studying heart development

Boni A Afouda et al. Trends Cardiovasc Med. 2009 Oct.

Abstract

Many developmental processes are highly conserved in all vertebrate organisms. This conservation has allowed developmental biologists to use numerous animal models to further our understanding of the molecular mechanisms that govern heart development and congenital heart disease. Amphibian embryos represent a useful model for such studies because their relatively large embryos are available in large numbers and survive simple microsurgery. In addition, until swimming tadpole stages, an amphibian embryo develops using nutrients stored in each of its many cells. This feature has the advantage that explants isolated from embryonic tissue will continue to survive in isolation and differentiate in culture. Furthermore, cells from the ectodermal layer of the blastula or gastrula embryos are stem cell like in that they are pluripotent and can be induced to form various tissues in vitro. Here, we will review work from recent studies in which explants from the amphibian embryos were used to further our understanding of vertebrate heart development. We will bring together the key facts needed for using Xenopus explants as experimental approaches for studying molecular pathways and gene regulatory networks in vertebrate cardiogenesis. The knowledge generated with these approaches supports the usefulness of amphibian explants, and the relevance of the findings strongly validates the conservation of molecular pathways that underlie heart development in all vertebrates.

PubMed Disclaimer

Publication types

LinkOut - more resources