Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 7;5(4):e10034.
doi: 10.1371/journal.pone.0010034.

The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool

Affiliations

The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool

Laure Diancourt et al. PLoS One. .

Abstract

Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Phylogenetic analysis of 173 Acinetobacter strains.
Concatenated sequences of seven protein-coding genes (2,976 nt in total) were compared using the neighbor-joining method and based on a Jukes-Cantor distance matrix. Bootstrap values obtained after 1,000 replicates are given at the nodes. The 154 A. baumannii strains clearly grouped into a compact cluster. Each of the four species of the A. calcaoceticus-baumannii complex was clearly distinct.
Figure 2
Figure 2. Minimum spanning tree analysis of 154 strains of A. baumannii.
The number of allelic mismatches among MLST profiles was used as distance. Each circle corresponds to one sequence type (ST), with its number indicated inside. Circle size increases logarithmically with the number of isolates that had this ST, from one (smallest circles) to 33 (ST2). Colored or grey zones that surround some groups of circles indicate that these profiles belong to the same clonal complex (CC), meaning that they have a single allelic mismatch with at least one other member of the group. Multiresistant clones CC1, CC2, CC3 and ST15 are colored. The colored pie chart sections inside circles indicate the proportion of strains that were part of one of the seven outbreak sets, the location and year of which is indicated besides the corresponding circle, in the same color. Seven genome reference strains are indicated in bold. Note that the inferred relationships displayed among STs differing by more than one allelic mismatch should not be considered as reliable, as many alternative links with the same number of mismatches often exist.
Figure 3
Figure 3. Distribution of A. baumannii isolates according to the level of multidrug resistance and their genotype.
The isolates allocated to four multidrug resistant international clones (CC1 to CC3 and ST15; colors as on Fig. 2 ) are compared with other A. baumannii isolates. Each of the seven outbreak sets (see text) was represented by only one isolate. Note that most members of clones CC1 to CC3 and ST15 are resistant to multiple antimicrobial agents, whereas most isolates of other genotypes are not.

References

    1. Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9:148–165. - PMC - PubMed
    1. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21:538–582. - PMC - PubMed
    1. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007;5:939–951. - PubMed
    1. Hoffmann MS, Eber MR, Laxminarayan R. Increasing resistance of Acinetobacter species to imipenem in United States hospitals, 1999-2006. Infect Control Hosp Epidemiol. 2010;31:196–197. - PubMed
    1. Dijkshoorn L, Aucken HM, Gerner-Smidt P, Kaufmann ME, Ursing J, et al. Correlation of typing methods for Acinetobacter isolates from hospital outbreaks. J Clin Microbiol. 1993;31:702–705. - PMC - PubMed

Publication types

LinkOut - more resources