A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy
- PMID: 20384267
- DOI: 10.1118/1.3298374
A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy
Abstract
Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation-and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy.
Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CT (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration.
Results: The ACRASM segmentation algorithm was compared to the original active shape mode (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to 6.54 mm for ASM. The volume overlap ratio ranged from 79% to 91% for ACRASM and from 44% to 80% for ASM. These data demonstrated that the segmentation results of ACRASM were in better agreement with the corresponding benchmarks than those of ASM. The developed registration algorithm was quantitatively evaluated by comparing the registered target volumes from the pCT to the benchmarks on the CBCT. The mean distance and the root mean square error ranged from 0.38 to 2.2 mm and from 0.45 to 2.36 mm, respectively, between the CBCT images and the registered pCT. The mean overlap ratio of the prostate volumes ranged from 85.2% to 95% after registration. The average time of the ACRASM-based segmentation was under 1 min. The average time of the global transformation was from 2 to 4 min on two 3D volumes and the average time of the local transformation was from 20 to 34 s on two deformable superquadrics mesh models.
Conclusions: A novel and fast segmentation and deformable registration method was developed to capture the transformation between the planning and treatment images for external beam radiotherapy of prostate cancers. This method increases the computational efficiency and may provide foundation to achieve real time adaptive radiotherapy.
Similar articles
-
Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT.Med Phys. 2010 Jan;37(1):197-210. doi: 10.1118/1.3271389. Med Phys. 2010. PMID: 20175482
-
3D meshless prostate segmentation and registration in image guided radiotherapy.Med Image Comput Comput Assist Interv. 2009;12(Pt 1):43-50. doi: 10.1007/978-3-642-04268-3_6. Med Image Comput Comput Assist Interv. 2009. PMID: 20425969
-
Quantitative evaluation of a cone-beam computed tomography-planning computed tomography deformable image registration method for adaptive radiation therapy.J Appl Clin Med Phys. 2007 Nov 5;8(4):96-113. doi: 10.1120/jacmp.v8i4.2432. J Appl Clin Med Phys. 2007. PMID: 18449149 Free PMC article.
-
A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning.Artif Intell Med. 2015 Jun;64(2):75-87. doi: 10.1016/j.artmed.2015.04.006. Epub 2015 May 16. Artif Intell Med. 2015. PMID: 26025124 Review.
-
A review of cone-beam CT applications for adaptive radiotherapy of prostate cancer.Phys Med. 2019 Mar;59:13-21. doi: 10.1016/j.ejmp.2019.02.014. Epub 2019 Feb 22. Phys Med. 2019. PMID: 30928061 Review.
Cited by
-
A magnetic resonance spectroscopy driven initialization scheme for active shape model based prostate segmentation.Med Image Anal. 2011 Apr;15(2):214-25. doi: 10.1016/j.media.2010.09.002. Epub 2010 Oct 28. Med Image Anal. 2011. PMID: 21195016 Free PMC article.
-
Performance evaluation of a newly developed three-dimensional model-based global-to-local registration in prostate cancer.J Radiat Res. 2019 Oct 23;60(5):595-602. doi: 10.1093/jrr/rrz031. J Radiat Res. 2019. PMID: 31135904 Free PMC article.
-
Surface deformation analysis of collapsed lungs using model-based shape matching.Int J Comput Assist Radiol Surg. 2019 Oct;14(10):1763-1774. doi: 10.1007/s11548-019-02013-0. Epub 2019 Jun 27. Int J Comput Assist Radiol Surg. 2019. PMID: 31250255 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical