Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;29(2):295-307.
doi: 10.1007/s10555-010-9221-8.

Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis

Affiliations
Review

Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis

Claudia Chiodoni et al. Cancer Metastasis Rev. 2010 Jun.

Abstract

The family of matricellular proteins comprises molecules with disparate biology. The main characteristic of matricellular proteins is to be expressed during tissue renewal and repair in order to "normalize" the tissue. Tumors are wound that do not heal, and tumor growth and metastasis can be viewed as a consequence of aberrant homeostasis, during which matricellular proteins are often upregulated. In the tumor microenvironment, they can be produced by both tumor cells and surrounding stromal cells, such as fibroblasts and macrophages. In this context, matricellular proteins can exert several functions that actively contribute to tumor progression. They may (a) regulate cellular adhesion and migration and extracellular matrix deposition, (b) control tumor infiltration by macrophages or other leukocytes, (c) affect tumor angiogenesis, (d) regulate TGFbeta and other growth factor receptor signals, (e) directly stimulate integrin receptors to transduce pro-survival or pro-migratory signals, and (f) regulate the wnt/beta-catenin pathways. Most of these functions contribute to settle a chronic low inflammatory state, whose involvement in tissue transformation and tumor progression is now established.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources