Homocysteine to hydrogen sulfide or hypertension
- PMID: 20387006
- PMCID: PMC2921842
- DOI: 10.1007/s12013-010-9079-y
Homocysteine to hydrogen sulfide or hypertension
Abstract
Hyperhomocysteinemia, an increased level of plasma homocysteine, is an independent risk factor for the development of premature arterial fibrosis with peripheral and cerebro-vascular, neurogenic and hypertensive heart disease, coronary occlusion and myocardial infarction, as well as venous thromboembolism. It is reported that hyperhomocysteinemia causes vascular dysfunction by two major routes: (1) increasing blood pressure and, (2) impairing the vasorelaxation activity of endothelial-derived nitric oxide. The homocysteine activates metalloproteinases and induces collagen synthesis and causes imbalances of elastin/collagen ratio which compromise vascular elastance. The metabolites from hyperhomocysteinemic endothelium could modify components of the underlying muscle cells, leading to vascular dysfunction and hypertension. Homocysteine metabolizes in the body to produce H(2)S, which is a strong antioxidant and vasorelaxation factor. At an elevated level, homocysteine inactivates proteins by homocysteinylation including its endogenous metabolizing enzyme, cystathionine gamma-lyase. Thus, reduced production of H(2)S during hyperhomocysteinemia exemplifies hypertension and vascular diseases. In light of the present information, this review focuses on the mechanism of hyperhomocysteinemia-associated hypertension and highlights the novel modulatory role of H(2)S to ameliorate hypertension.
Conflict of interest statement
Figures
References
-
- Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension. Annals of Internal Medicine. 2003;139:761–776. - PubMed
-
- Rolland PH, Friggi A, Barlatier A, Piquet P, Latrille V, Faye MM, et al. Hyperhomocysteinemia-induced vascular damage in the minipig. Captopril-hydrochlorothiazide combination prevents elastic alterations. Circulation. 1995;91:1161–1174. - PubMed
-
- Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. New England Journal of Medicine. 1997;336:1117–1124. - PubMed
-
- Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS. Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. Journal of the American College of Cardiology. 1999;34:2002–2006. - PubMed
-
- Wollesen F, Brattstrom L, Refsum H, Ueland PM, Berglund L, Berne C. Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney International. 1999;55:1028–1035. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
