Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 May 1;44(9):3221-31.
doi: 10.1021/es903476t.

Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people?

Affiliations
Review

Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people?

Stuart Harrad et al. Environ Sci Technol. .

Abstract

This review underlines the importance of indoor contamination as a pathway of human exposure to hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs), and perfluoroalkyl compounds (PFCs). There is ample evidence of substantial contamination of indoor dust with these chemicals and that their concentrations in indoor air exceed substantially those outdoors. Studies examining the relationship between body burden and exposure via indoor dust are inconsistent; while some indicate a link between body burdens and PBDE and HBCD exposure via dust ingestion, others find no correlation. Likewise, while concentrations in indoor dust and human tissues are both highly skewed, this does not necessarily imply causality. Evidence suggests exposure via dust ingestion is higher for toddlers than adults. Research priorities include identifying means of reducing indoor concentrations and indoor monitoring methods that provide the most "biologically-relevant" measures of exposure as well as monitoring a wider range of microenvironment categories. Other gaps include studies to improve understanding of the following: emission rates and mechanisms via which these contaminants migrate from products into indoor air and dust; relationships between indoor exposures and human body burdens; relevant physicochemical properties; the gastrointestinal uptake by humans of these chemicals from indoor dust; and human dust ingestion rates.

PubMed Disclaimer

Publication types