Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Nov;22(11):1597-603.
doi: 10.1016/j.cellsig.2010.04.003. Epub 2010 Apr 11.

Signaling role of the voltage-gated calcium channel as the molecular on/off-switch of secretion

Affiliations
Review

Signaling role of the voltage-gated calcium channel as the molecular on/off-switch of secretion

Daphne Atlas. Cell Signal. 2010 Nov.

Abstract

Voltage-gated calcium channels (VGCC) are involved in a large variety of cellular Ca(2+) signaling processes, including exocytosis, a Ca(2+) dependent release of neurotransmitters and hormones. Great progress has been made in understanding the mode of action of VGCC in exocytosis, a process distinguished by two sequential yet independent Ca(2+) binding reactions. First, Ca(2+) binds at the selectivity filter, the EEEE motif of the VGCC, and second, subsequent to a brief and intense Ca(2+) inflow to synaptotagmin, a vesicular protein. Inquiry into the functional and physical interactions of the channels with synaptic proteins has demonstrated that exocytosis is triggered during the initial Ca(2+) binding at the channel pore, prior to Ca(2+) entry. Accordingly, a cycle of secretion begins by an incoming stimulus that releases vesicles from a releasable pool upon Ca(2+) binding at the pore, and at the same time, the transient increase in [Ca(2+)](i) primes a fresh set of non-releasable vesicles, to be fused by the next incoming stimulus. We propose a model, in which the Ca(2+) binding at the EEEE motif and the consequent conformational changes in the channel are the primary event in triggering secretion, while synaptotagmin acts as a vesicle docking protein. Thus, the channel serves as the molecular On/Off signaling switch, where the predominance of a conformational change in Ca(2+)-bound channel provides for the fast secretory process.

PubMed Disclaimer

Publication types

LinkOut - more resources