Quorum-sensing regulator sdiA and marA overexpression is involved in in vitro-selected multidrug resistance of Escherichia coli
- PMID: 20395215
- DOI: 10.1093/jac/dkq112
Quorum-sensing regulator sdiA and marA overexpression is involved in in vitro-selected multidrug resistance of Escherichia coli
Abstract
Objectives: The role of sdiA in the acquisition of low-level multidrug resistance (MDR) was analysed and compared with that of marA and soxS in two Escherichia coli clinical isolates and two in vitro-selected mutants.
Methods: The mutants were developed by growth in lomefloxacin and ceftazidime. The sdiA, marA, soxS, ftsI, tolC and acrB gene transcript levels were determined by RT-PCR. Analyses of 2,4-dinitrophenol susceptibility, the effect of an active efflux inhibitor on antibiotic and mitomycin C susceptibility, beta-lactamase hydrolytic activity, outer and inner membrane proteins and acrR gene sequencing were also performed.
Results: Both mutants showed elevated marA and sdiA gene transcript levels, which were associated with increased susceptibility to 2,4-dinitrophenol; soxS overexpression was only seen in the mutant selected with ceftazidime. The two mutants showed MDR phenotypes in which ceftazidime, cefpirome and aztreonam MICs increased 4- to 128-fold, in addition to decreased susceptibility to quinolones, chloramphenicol and mitomycin C. The highest ceftazidime MIC in one of the mutants coincided with a frameshift mutation in acrR and the highest transcript level of ftsI (penicillin-binding protein 3), but not with a higher beta-lactamase activity. Likewise, active efflux associated with increased levels of acrB and tolC and decreased OmpF expression contributed to low-level MDR in both mutants.
Conclusions: marA and sdiA overexpression was a common feature of multidrug-resistant mutants selected by growth in lomefloxacin and ceftazidime. To our knowledge, this report is the first to describe in vitro selection with a fluoroquinolone or ceftazidime triggering sdiA overexpression in E. coli isolates.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical