Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 1;5(6):1332-40.
doi: 10.1002/asia.200900463.

Magnetic silica-coated sub-microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood

Affiliations

Magnetic silica-coated sub-microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood

Min Zhang et al. Chem Asian J. .

Abstract

Magnetic silica-coated magnetite (Fe(3)O(4)) sub-microspheres with immobilized metal-affinity ligands are prepared for protein adsorption. First, magnetite sub-microspheres were synthesized by a hydrothermal method. Then silica was coated on the surface of Fe(3)O(4) particles using a sol-gel method to obtain magnetic silica sub-microspheres with core-shell morphology. Next, the trichloro(4-chloromethylphenyl) silane was immobilized on them, reacted with iminodiacetic acid (IDA), and charged with Cu(2+). The obtained magnetic silica sub-microspheres with immobilized Cu(2+) were applied for the absorption of bovine hemoglobin (BHb) and the removal of BHb from bovine blood. The size, morphology, and magnetic properties of the resulting magnetic micro(nano) spheres were investigated by using scanning microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a vibrating sample magnetometer (VSM). The measurements showed that the magnetic sub-microspheres are spherical in shape, very uniform in size with a core-shell, and are almost superparamagnetic. The saturation magnetization of silica-coated magnetite (Fe(3)O(4)) sub-microspheres reached about 33 emu g(-1). Protein adsorption results showed that the sub-microspheres had a high adsorption capacity for BHb (418.6 mg g(-1)), low nonspecific adsorption, and good removal of BHb from bovine blood. This opens a novel route for future applications in removing abundant proteins in proteomic analysis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources