Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010;22(1):1-6.
doi: 10.1016/s1001-0742(09)60067-x.

Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide

Affiliations

Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide

Fangfang Chang et al. J Environ Sci (China). 2010.

Abstract

A treatment unit packed by granular adsorbent of Fe-Mn binary oxide incorporated into diatomite (FMBO(1:1)-diatomite) was studied to remove arsenic from anaerobic groundwater without any pre-treatment or post-treatment. The raw anaerobic groundwater containing 35-45 microg/L of arsenic was collected from suburb of Beijing. Arsenic (III) constituted roughly 60%-80% of the total arsenic content. Approximately 7,000 bed volumes (ratio of effluent volume to adsorbent volume) treated water with arsenic concentration below 10 microg/L were produced in the operation period of four months. The regeneration of FMBO (1:1)-diatomite had been operated for 15 times. In the first stage, the regeneration process significantly improved the adsorption capacity of FMBO (1:1)-diatomite. With increased loading amount of Fe-Mn binary oxide, the adsorption capacity for arsenic decreased 20%-40%. Iron and manganese in anaerobic groundwater were oxidized and adsorptive filtrated by FMBO (1:1)-diatomite efficiently. The final concentrations of iron and manganese in effluents were nearly zero. The continued safe performance of the treatment units proved that adsorbent FMBO (1:1)-diatomite had high oxidation ability and exhibited strong adsorptive filtration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources