Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 15:3:9.
doi: 10.1186/1755-8166-3-9.

Validation and implementation of array comparative genomic hybridisation as a first line test in place of postnatal karyotyping for genome imbalance

Affiliations

Validation and implementation of array comparative genomic hybridisation as a first line test in place of postnatal karyotyping for genome imbalance

Joo Wook Ahn et al. Mol Cytogenet. .

Abstract

Background: Several studies have demonstrated that array comparative genomic hybridisation (CGH) for genome-wide imbalance provides a substantial increase in diagnostic yield for patients traditionally referred for karyotyping by G-banded chromosome analysis. The purpose of this study was to demonstrate the feasibility of and strategies for, the use of array CGH in place of karyotyping for genome imbalance, and to report on the results of the implementation of this approach.

Results: Following a validation period, an oligoarray platform was chosen. In order to minimise costs and increase efficiency, a patient/patient hybridisation strategy was used, and analysis criteria were set to optimise detection of pathogenic imbalance. A customised database application with direct links to a number of online resources was developed to allow efficient management and tracking of patient samples and facilitate interpretation of results. Following introduction into our routine diagnostic service for patients with suspected genome imbalance, array CGH as a follow-on test for patients with normal karyotypes (n = 1245) and as a first-line test (n = 1169) gave imbalance detection rates of 26% and 22% respectively (excluding common, benign variants). At least 89% of the abnormalities detected by first line testing would not have been detected by standard karyotype analysis. The average reporting time for first-line tests was 25 days from receipt of sample.

Conclusions: Array CGH can be used in a diagnostic service setting in place of G-banded chromosome analysis, providing a more comprehensive and objective test for patients with suspected genome imbalance. The increase in consumable costs can be minimised by employing appropriate hybridisation strategies; the use of robotics and a customised database application to process multiple samples reduces staffing costs and streamlines analysis, interpretation and reporting of results. Array CGH provides a substantially higher diagnostic yield than G-banded chromosome analysis, thereby alleviating the burden of further clinical investigations.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Array CGH diagnostic service workflow. This example illustrates the diagnostic workflow for two patients, one of whom has a previously undetected imbalance of potential clinical significance. Yellow shading signifies automated procedures (we plan to also automate labelling, hybridisation and washing).
Figure 2
Figure 2
Comparison of de novo imbalance detection rates. Proportion of de novo findings in first line array CGH and post-normal karyotype array CGH cohorts. Higher rates of de novo findings in the post-normal karyotype cohort reflect the stringent clinical selection of these patients; these patients would have been diagnosed at an earlier stage had array CGH been carried out as the first line test.

References

    1. Trask BJ. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 1991;7:149–154. - PubMed
    1. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30:e57. doi: 10.1093/nar/gnf056. - DOI - PMC - PubMed
    1. Ahn JW, Ogilvie CM, Welch A, Thomas H, Madula R, Hills A, Donaghue C, Mann K. Detection of subtelomere imbalance using MLPA: validation, development of an analysis protocol, and application in a diagnostic centre. BMC Med Genet. 2007;8:9. doi: 10.1186/1471-2350-8-9. - DOI - PMC - PubMed
    1. Kallioniemi OP, Kallioniemi A, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D. Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol. 1993;4:41–46. - PubMed
    1. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, Cremer T, Lichter P. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20:399–407. doi: 10.1002/(SICI)1098-2264(199712)20:4<399::AID-GCC12>3.0.CO;2-I. - DOI - PubMed

LinkOut - more resources