Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 16:10:68.
doi: 10.1186/1471-2229-10-68.

Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae

Affiliations

Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae

Fu-Hui Wu et al. BMC Plant Biol. .

Abstract

Background: Oncidium spp. produce commercially important orchid cut flowers. However, they are amenable to intergeneric and inter-specific crossing making phylogenetic identification very difficult. Molecular markers derived from the chloroplast genome can provide useful tools for phylogenetic resolution.

Results: The complete chloroplast genome of the economically important Oncidium variety Onc. Gower Ramsey (Accession no. GQ324949) was determined using a polymerase chain reaction (PCR) and Sanger based ABI sequencing. The length of the Oncidium chloroplast genome is 146,484 bp. Genome structure, gene order and orientation are similar to Phalaenopsis, but differ from typical Poaceae, other monocots for which there are several published chloroplast (cp) genome. The Onc. Gower Ramsey chloroplast-encoded NADH dehydrogenase (ndh) genes, except ndhE, lack apparent functions. Deletion and other types of mutations were also found in the ndh genes of 15 other economically important Oncidiinae varieties, except ndhE in some species. The positions of some species in the evolution and taxonomy of Oncidiinae are difficult to identify. To identify the relationships between the 15 Oncidiinae hybrids, eight regions of the Onc. Gower Ramsey chloroplast genome were amplified by PCR for phylogenetic analysis. A total of 7042 bp derived from the eight regions could identify the relationships at the species level, which were supported by high bootstrap values. One particular 1846 bp region, derived from two PCR products (trnHGUG -psbA and trnFGAA-ndhJ) was adequate for correct phylogenetic placement of 13 of the 15 varieties (with the exception of Degarmoara Flying High and Odontoglossum Violetta von Holm). Thus the chloroplast genome provides a useful molecular marker for species identifications.

Conclusion: In this report, we used Phalaenopsis. aphrodite as a prototype for primer design to complete the Onc. Gower Ramsey genome sequence. Gene annotation showed that most of the ndh genes inOncidiinae, with the exception of ndhE, are non-functional. This phenomenon was observed in all of the Oncidiinae species tested. The genes and chloroplast DNA regions that would be the most useful for phylogenetic analysis were determined to be the trnHGUG-psbA and the trnFGAA-ndhJ regions. We conclude that complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies in Oncidium with applications for breeding and variety identification.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Parents of 15 varieties of Oncidiinae. 1Yellow background: Oncidium; white: Beallara; blue: Odontoglossum; purple: Odontocidium; green: Degarmoara; red: Zelenkocidium. 2Onc. Aloha = Onc. Goldiana × Onc. Star Wars. 3Mtssa Charles = Brassia verrucosa × Milt. spectabilis.
Figure 2
Figure 2
Primers for Oncidiinae ndh gene and phylogenetic analysis. 1Primer sequences, annealing site of the forward primer in Onc. Gower Ramsey and the anticipated amplicon size (bp) are presented. 2Different background colors indicate different experiments; gray: ndh gene identification; yellow: phylogenetic analysis.
Figure 3
Figure 3
Gene map of Onc. Gower Ramsey chloroplast genome. The thick lines indicate the extent of the IRa and IRb, which separate the genome into SSC and LSC regions. Genes on the outside of the map are transcribed clockwise and genes on the inside of the map are transcribed counterclockwise.
Figure 4
Figure 4
Maximum likelihood phylogram for 61 conserved protein-coding genes. All nodes have 100% ML bootstrap support unless otherwise indicated. Horizontal branch lengths are proportional to the number of inferred substitutions/site along that branch. One node, marked "nr," was not resolved in the ML bootstrap consensus tree. The position of Oncidium in a clade of Asparagales is indicated with an arrow.
Figure 5
Figure 5
Summary of ndh gene patterns in Oncidiinae. 1Different background colors indicate different genera; yellow: Oncidium, white: Beallara, blue: Odontoglossum, pink: Odontocidium, purple: Colmanara, green: Degarmoara, red:Zelenkocidium. 2GR: Gower Ramsey, Sunkiss: Gower Ramsey 'Sunkiss', L. H.: Lemon heart, M. C.: Sweet sugar 'Million Coin', E. star: Eurostar, M. J.: Peggy Ruth Carpenter 'Morning Joy', H. D.: Marfitch 'Howard Dream', S. S.: Tahoma Glacier 'Sugar Sweet', S. E.: Smile Eri, M. H.: Margarete Holm, V. v. H.: Violetta. von Holm, G.G.: Golden Gate, W.G.: Wildcat 'Garfield', Dgmra: Dgmra. Flying High, L. A.: Little Angel. 3'black star': absent genes (no sequence exists). 'white star': stop codon (There is no change in gene size but there are stop codons within coding sequences). 'black triangle': truncated genes (only partial coding sequences are observed). 'white triangle': frame shift (reading frame shifted or nucleotides deleted). 'white circle': functional protein., -: no PCR product obtained using the primers in Figure 2.
Figure 6
Figure 6
Structure of ndh genes are different in Oncidiinae varieties. Numbers indicate the positions in the chloroplast genome. The angled dashed lines indicate the gaps. Different colors indicate different ndh genes, a color key is shown at the bottom of each part of the Figure. Detailed information is shown in Figure 5. 1 including most of the Oncidiinae except Zelenkocidium Little Angel. 2including three Oncidium Gower Ramsey varieties, Bllra. Tahoma Glacier 'Sugar Sweet', Odm. Violetta, von Holm, Odcdm. Wild cat 'Garfield', and Zelenkoncidium Little Angel. 3including four Oncidium varieties, two Odontoglossum varieties, one Odontocidium, Dgmra Fly High, and Zelenkoncidium Little Angel. 4 including Bllra. Eurostar, Bllra. Marfitch 'Howard Dream', and Bllra. Smile Eri. 5including four Oncidium varieties, two Odontoglossum varieties, two Odontocidium varieties, Dgmra. Fly High. 6including Bllra. Eurostar, Bllra. Peggy Ruth Carpenter, and Bllra. Marfitch 'Howard Dream'. 7including three Oncidium varieties. 8including Bllra. Eurostar, Bllra. Tahoma Glacier 'Sugar Sweet', Bllra Peggy Ruth Carpenter and Bllra. Smile Eri.
Figure 7
Figure 7
Maximum parsimony phylogenetic trees using different cpDNA regions of 15 varieties of Oncidiinae. These trees are based on the nucleotide sequences of (A) matK (B) trnHGUG-psbA+matK (C) trnHGUG-psbA+trnFGAA-ndhJ (D) from all eight cpDNA regions. The numbers at the nodes indicate bootstrap support values. The scale bar indicates a branch length corresponding to 100 character-state changes.

Similar articles

Cited by

References

    1. Webster P. The Orchid Genus Book. Hunters Breeze, USA; 1992. Oncidium subtribe.
    1. Chase W, Palmer JD. Chloroplast DNA systematics of lilioid monocots: resources, feasibility, and an example from the Orchidaceae. Amer J Bot. 1989;76:1720–1730. doi: 10.2307/2444471. - DOI
    1. Tsai CC, Huang SC, Huang PL, Chen YS, Chou CH. Phenetic relationship and identification of subtribe Oncidiinae genotypes by random amplified polymorphic DNA (RAPD) markers. Sci Hort. 2002;101:315–325. doi: 10.1016/j.scienta.2003.11.004. - DOI
    1. Tien X, Li DZ. Application of DNA sequences in plant phylogenetic study. Acta Bot Yumnan. 2002;24:170–184.
    1. Cao Q-q, Zhen Z, Jiang J, Liu Y-f, Feng Y-q, Qin L. Chloroplast DNA analysis technology and its application in Castanea. J Fruit Sci. 2008;25:396–399.

Publication types

LinkOut - more resources