Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;31(21):5498-509.
doi: 10.1016/j.biomaterials.2010.03.058. Epub 2010 Apr 15.

The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites

Affiliations

The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites

Seyed-Iman Roohani-Esfahani et al. Biomaterials. 2010 Jul.

Abstract

We developed a composite biphasic calcium phosphate (BCP) scaffold by coating a nanocomposite layer, consisting of hydroxyapatite (HA) nanoparticles and polycaprolactone (PCL), over the surface of BCP. The effects of HA particle size and shape in the coating layer on the mechanical and biological properties of the BCP scaffold were examined. Micro-computerized tomography studies showed that the prepared scaffolds were highly porous (approximately 91%) with large pore size (400-700 microm) and an interconnected porous network of approximately 100%. The HA nanoparticle (needle shape)-composite coated scaffolds displayed the highest compressive strength (2.1 +/- 0.17 MPa), compared to pure HA/beta-TCP (0.1 +/- 0.05 MPa) and to the micron HA - composite coated scaffolds (0.29 +/- 0.07 MPa). These needle shaped scaffolds also showed enhanced elasticity and similar stress-strain profile to natural bone. Needle shaped coated HA/PCL particles induced the differentiation of primary human bone derived cells, with significant upregulation of osteogenic gene expression (Runx2, collagen type I, osteocalcin and bone sialoprotein) and alkaline phosphatase activity compared to other groups. These properties are essential for enhancing bone ingrowth in load-bearing applications. The developed composite scaffolds possessed superior physical, mechanical, elastic and biological properties rendering them potentially useful for bone tissue regeneration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources