Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;73(5):1004-11.
doi: 10.1016/j.ecoenv.2010.03.009.

Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L

Affiliations

Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L

A Belkhadi et al. Ecotoxicol Environ Saf. 2010 Jul.

Abstract

The effects of salicylic acid (SA) on cadmium (Cd) toxicity in flax plants were studied by investigating plant growth, lipid peroxidation and fatty acid composition. Cadmium inhibited biomass production as well as the absorption of K, Ca, Mg and Fe. Furthermore, it dramatically increased Cd accumulation in both roots and shoots. The pre-soaking of dry flax grains in SA-containing solutions partially protected seedlings from Cd toxicity during the following growth period. SA treatment decreased the uptake and the transport of Cd, alleviated the Cd-induced inhibition of Ca, Mg and Fe absorption and promoted plant growth. At leaf level, Cd significantly decreased both total lipid (TL) and chlorophyll (Chl) content and enhanced electrolyte leakage and lipid peroxidation as indicated by malondialdehyde (MDA) accumulation. Concomitantly, Cd caused a shift in fatty acid composition, resulting in a lower degree of their unsaturation. SA pre-soaking ameliorated the increased electrolyte leakage as well as Chl, MDA and TL content. SA particularly increased the percentage of linolenic acid and lowered that of palmitic acid by the same proportion. These results suggest that SA could be used as a potential growth regulator and a stabilizer of membrane integrity to improve plant resistance to Cd stress.

PubMed Disclaimer

MeSH terms