Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar 18;59(1):31-7.
doi: 10.1016/0165-3806(91)90026-f.

Initial cholinergic differentiation in embryonic chick retina is responsive to insulin and cell-cell interactions

Affiliations

Initial cholinergic differentiation in embryonic chick retina is responsive to insulin and cell-cell interactions

R E Hausman et al. Brain Res Dev Brain Res. .

Abstract

Previous work [Kyriakis et al., Proc. Natl. Acad. Sci. U.S.A., 84 (1987) 7463-7467] had shown that insulin, when added during a window of binding from embryonic days 9-11, stimulates the normal developmental increase in choline acetyltransferase (ChAT) activity (a marker for cholinergic differentiation) in cultured embryonic chick retinal neurons. Here, we investigated the effect of insulin and IGF 1 on embryonic chick retinal neurons at the stage of development (embryonic day 6) when ChAT activity is first expressed. We investigated insulin peptide effects in retinal tissue developing in vitro as well as in cultures of retinal cells. We show that insulin also stimulated the initial embryonic increase in ChAT activity but had no stimulatory effect on glutamic acid decarboxylase activity (a marker for GABAergic differentiation), an enzyme whose activity also increases developmentally in the same retinal neurons. In fact, insulin inhibited the expression of GAD activity in the retina. The insulin-mediated increase in ChAT activity was independent of normal cell-cell interactions but could not replace them. Insulin also stimulated choline uptake but only after a two day delay, suggesting that the normal program for cholinergic differentiation in the chick retina was induced by insulin. IGF 1 did not have any effect on either cholinergic or GABAergic differentiation. We conclude that cholinergic differentiation in chick embryo retinal neurons is dependent on both insulin- and cell contact-mediated signals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources