Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;114(1):237-46.
doi: 10.1111/j.1471-4159.2010.06747.x. Epub 2010 Apr 9.

Inhibition of extracellular signal-regulated kinases 1/2 provides neuroprotection in spinal cord ischemia/reperfusion injury in rats: relationship with the nuclear factor-kappaB-regulated anti-apoptotic mechanisms

Affiliations
Free article

Inhibition of extracellular signal-regulated kinases 1/2 provides neuroprotection in spinal cord ischemia/reperfusion injury in rats: relationship with the nuclear factor-kappaB-regulated anti-apoptotic mechanisms

Kang Lu et al. J Neurochem. 2010 Jul.
Free article

Abstract

Previously we demonstrated benefits of inhibiting the extracellular signal-regulated kinases 1/2 (ERK1/2) signaling pathway in spinal cord ischemia/reperfusion (I/R) injury. To further identify the underlying mechanisms, we investigated the impact of ERK inhibition on apoptosis and cellular protective mechanisms against cell death. Spinal cord I/R injury induced ERK1/2 phosphorylation, followed by neuronal loss through caspase 3-mediated apoptosis. Pre-treatment with U0126, a specific inhibitor of MAPK/ERK kinases 1/2 (MEK1/2), inhibited ERK1/2 phosphorylation, and significantly attenuated apoptosis and increased neuronal survival. MEK/ERK inhibition also induced I-kappaB phosphorylation and enhanced nuclear factor (NF)-kappaB/DNA binding activity, leading to expression of cellular inhibitors of apoptosis protein 2 (c-IAP2), a known nuclear factor-kappaB (NF-kappaB)-regulated endogenous anti-apoptotic molecule. Pyrrolidine dithiocarbamate, an NF-kappaB inhibitor, by blocking I-kappaB phosphorylation, NF-kappaB activation, and c-IAP2 synthesis, abolished the protective effects of U0126. The MEK/ERK pathway appears to mediate cellular death following I/R injury. The U0126 neuroprotection appears related to NF-kappaB-regulated transcriptional control of c-IAP2. MEK/ERK inhibition at the initial stage of I/R injury may cause changes in c-IAP2 gene expression or c-IAP2/caspase 3 interactions, resulting in long lasting therapeutic effects. Future research should focus on the possible cross-talk between the MEK/ERK pathway and the NF-kappaB transcriptional cascade.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources