Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Apr 20:10:20.
doi: 10.1186/1471-2466-10-20.

Comparison of the effect of LPS and PAM3 on ventilated lungs

Affiliations
Comparative Study

Comparison of the effect of LPS and PAM3 on ventilated lungs

Hans P Hauber et al. BMC Pulm Med. .

Abstract

Background: While lipopolysaccharide (LPS) from Gram-negative bacteria has been shown to augment inflammation in ventilated lungs information on the effect of Gram-positive bacteria is lacking. Therefore the effect of LPS and a lipopetide from Gram-positive bacteria, PAM3, on ventilated lungs were investigated.

Methods: C57/Bl6 mice were mechanically ventilated. Sterile saline (sham) and different concentrations of LPS (1 microg and 5 microg) and PAM3 (50 nM and 200 nM) were applied intratracheally. Lung function parameters and expression of MIP-2 and TNFalpha as well as influx of neutrophils were measured.

Results: Mechanical ventilation increased resistance and decreased compliance over time. PAM3 but not LPS significantly increased resistance compared to sham challenge (P < 0.05). Both LPS and PAM3 significantly increased MIP-2 and TNFalpha mRNA expression compared to sham challenge (P < 0.05). The numbers of neutrophils were significantly increased after LPS at a concentration of 5 microg compared to sham (P < 0.05). PAM3 significantly increased the numbers of neutrophils at both concentrations compared to sham (P < 0.05).

Conclusions: These data suggest that PAM3 similar to LPS enhances ventilator-induced inflammation. Moreover, PAM3 but not LPS increases pulmonary resistance in ventilated lungs. Further studies are warranted to define the role of lipopetides in ventilator-associated lung injury.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Relative changes in resistance (A) and compliance (B) during mechanical ventilation alone and after challenge with sterile saline (sham), LPS (1 μg and 5 μg) and PAM3 (50 nM and 200 nM). Mean values are shown.
Figure 2
Figure 2
Relative changes of lung function parameters from time of stimulation (30 min) to the end of ventilation (120 min). A: Resistance (R) and tissue damping (G) significantly increased after PAM3 (P < 0.05) but not in the other groups. No significant change was observed for Newtonian resistance (Rn) (P > 0.05). B: Elastance (H) significantly increased with PAM3 (P < 0.05). C: Compliance (C) was significantly decreased after stimulation with PAM3 (P < 0.05).
Figure 3
Figure 3
MIP-2 (A) and TNFα (B) gene expression in the mouse lung of spontaneously breathing animals (w/o, without mechanical ventilation) and mechanical ventilated animals without challenge (control), with intratracheal saline challenge (sham) and with challenge with LPS or PAM3 at different doses. Bars indicate mean+SEM. *: P < 0.05 vs spontaneously breathing mice. **: P < 0.05 vs control. +: P < 0.05 vs sham. § P < 0.05 vs PAM3 challenge.
Figure 4
Figure 4
Numbers of polymorphonuclear cells (PMN) per high powered field in the mouse lung of spontaneously breathing animals (w/o, without mechanical ventilation) and mechanical ventilated animals without challenge (control), with intratracheal saline challenge (sham) and with challenge with LPS or PAM3 at different doses. Bars indicate mean+SEM. *: P < 0.05 vs sham.
Figure 5
Figure 5
Histology sections of mouse lungs with ventilation alone (A), after sham challenge (B), after LPS challenge (5 μg) (C), and after PAM3 challenge (200 nM) (D). HE staining. Original magnification ×100.

Similar articles

Cited by

References

    1. Parker JC, Hernandez LA, Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med. 1993;21:131–143. - PubMed
    1. Corbridge TC, Wood LD, Crawford GP, Chudoba MJ, Yanos J, Sznajder JI. Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis. 1990;142:311–315. - PubMed
    1. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–1164. - PubMed
    1. Peevy KJ, Hernandez LA, Moise AA, Parker JC. Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern. Crit Care Med. 1990;18:634–637. doi: 10.1097/00003246-199006000-00012. - DOI - PubMed
    1. Tsuno K, Prato P, Kolobow T. Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appl Physiol. 1990;69:956–961. - PubMed

Publication types

MeSH terms

LinkOut - more resources