Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter
- PMID: 20404166
- PMCID: PMC2889338
- DOI: 10.1073/pnas.1000177107
Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter
Abstract
Responding to green and red light, certain cyanobacteria change the composition of their light-harvesting pigments, phycoerythrin (PE) and phycocyanin (PC). Although this phenomenon-complementary chromatic adaptation-is well known, the green light-sensing mechanism for PE accumulation is unclear. The filamentous cyanobacterium Nostoc punctiforme ATCC 29133 (N. punctiforme) regulates PE synthesis in response to green and red light (group II chromatic adaptation). We disrupted the green/red-perceiving histidine-kinase gene (ccaS) or the cognate response regulator gene (ccaR), which are clustered with several PE and PC genes (cpeC-cpcG2-cpeR1 operon) in N. punctiforme. Under green light, wild-type cells accumulated a significant amount of PE upon induction of cpeC-cpcG2-cpeR1 expression, whereas they accumulated little PE with suppression of cpeC-cpcG2-cpeR1 expression under red light. Under both green and red light, the ccaS mutant constitutively accumulated some PE with constitutively low cpeC-cpcG2-cpeR1 expression, whereas the ccaR mutant accumulated little PE with suppression of cpeC-cpcG2-cpeR1 expression. The results of an electrophoretic mobility shift assay suggest that CcaR binds to the promoter region of cpeC-cpcG2-cpeR1, which contains a conserved direct-repeat motif. Taken together, the results suggest that CcaS phosphorylates CcaR under green light and that phosphorylated CcaR then induces cpeC-cpcG2-cpeR1 expression, leading to PE accumulation. In contrast, CcaS probably represses cpeC-cpcG2-cpeR1 expression by dephosphorylation of CcaR under red light. We also found that the cpeB-cpeA operon is partially regulated by green and red light, suggesting that the green light-induced regulatory protein CpeR1 activates cpeB-cpeA expression together with constitutively induced CpeR2.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein.Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9528-33. doi: 10.1073/pnas.0801826105. Epub 2008 Jul 9. Proc Natl Acad Sci U S A. 2008. PMID: 18621684 Free PMC article.
-
Light-dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria.Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18542-7. doi: 10.1073/pnas.1107427108. Epub 2011 Oct 31. Proc Natl Acad Sci U S A. 2011. PMID: 22042852 Free PMC article.
-
Artificial complementary chromatic acclimation gene expression system in Escherichia coli.Microb Cell Fact. 2021 Jul 5;20(1):128. doi: 10.1186/s12934-021-01621-3. Microb Cell Fact. 2021. PMID: 34225717 Free PMC article.
-
Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria.Curr Opin Plant Biol. 2017 Jun;37:18-23. doi: 10.1016/j.pbi.2017.03.009. Epub 2017 Apr 6. Curr Opin Plant Biol. 2017. PMID: 28391048 Review.
-
Complementary chromatic adaptation: photoperception to gene regulation.Semin Cell Biol. 1994 Oct;5(5):303-13. doi: 10.1006/scel.1994.1037. Semin Cell Biol. 1994. PMID: 7881070 Review.
Cited by
-
Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.Front Bioeng Biotechnol. 2022 Oct 14;10:1029403. doi: 10.3389/fbioe.2022.1029403. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36312534 Free PMC article. Review.
-
A Gene Circuit Combining the Endogenous I-E Type CRISPR-Cas System and a Light Sensor to Produce Poly-β-Hydroxybutyric Acid Efficiently.Biosensors (Basel). 2022 Aug 15;12(8):642. doi: 10.3390/bios12080642. Biosensors (Basel). 2022. PMID: 36005038 Free PMC article.
-
Chromatic Acclimation Processes and Their Relationships with Phycobiliprotein Complexes.Microorganisms. 2022 Aug 3;10(8):1562. doi: 10.3390/microorganisms10081562. Microorganisms. 2022. PMID: 36013980 Free PMC article.
-
Regulatory Diversity and Functional Analysis of Two-Component Systems in Cyanobacterium Synechocystis sp. PCC 6803 by GC-MS Based Metabolomics.Front Microbiol. 2020 Mar 17;11:403. doi: 10.3389/fmicb.2020.00403. eCollection 2020. Front Microbiol. 2020. PMID: 32256471 Free PMC article.
-
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore.Adv Exp Med Biol. 2021;1293:167-187. doi: 10.1007/978-981-15-8763-4_10. Adv Exp Med Biol. 2021. PMID: 33398813 Review.
References
-
- Ikeuchi M, Ishizuka T. Cyanobacteriochromes: A new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci. 2008;7:1159–1167. - PubMed
-
- Narikawa R, Kohchi T, Ikeuchi M. Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci. 2008;7:1253–1259. - PubMed
-
- Yoshihara S, Katayama M, Geng X, Ikeuchi M. Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant Cell Physiol. 2004;45:1729–1737. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources