Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter
- PMID: 20404166
- PMCID: PMC2889338
- DOI: 10.1073/pnas.1000177107
Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter
Abstract
Responding to green and red light, certain cyanobacteria change the composition of their light-harvesting pigments, phycoerythrin (PE) and phycocyanin (PC). Although this phenomenon-complementary chromatic adaptation-is well known, the green light-sensing mechanism for PE accumulation is unclear. The filamentous cyanobacterium Nostoc punctiforme ATCC 29133 (N. punctiforme) regulates PE synthesis in response to green and red light (group II chromatic adaptation). We disrupted the green/red-perceiving histidine-kinase gene (ccaS) or the cognate response regulator gene (ccaR), which are clustered with several PE and PC genes (cpeC-cpcG2-cpeR1 operon) in N. punctiforme. Under green light, wild-type cells accumulated a significant amount of PE upon induction of cpeC-cpcG2-cpeR1 expression, whereas they accumulated little PE with suppression of cpeC-cpcG2-cpeR1 expression under red light. Under both green and red light, the ccaS mutant constitutively accumulated some PE with constitutively low cpeC-cpcG2-cpeR1 expression, whereas the ccaR mutant accumulated little PE with suppression of cpeC-cpcG2-cpeR1 expression. The results of an electrophoretic mobility shift assay suggest that CcaR binds to the promoter region of cpeC-cpcG2-cpeR1, which contains a conserved direct-repeat motif. Taken together, the results suggest that CcaS phosphorylates CcaR under green light and that phosphorylated CcaR then induces cpeC-cpcG2-cpeR1 expression, leading to PE accumulation. In contrast, CcaS probably represses cpeC-cpcG2-cpeR1 expression by dephosphorylation of CcaR under red light. We also found that the cpeB-cpeA operon is partially regulated by green and red light, suggesting that the green light-induced regulatory protein CpeR1 activates cpeB-cpeA expression together with constitutively induced CpeR2.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Ikeuchi M, Ishizuka T. Cyanobacteriochromes: A new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci. 2008;7:1159–1167. - PubMed
-
- Narikawa R, Kohchi T, Ikeuchi M. Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci. 2008;7:1253–1259. - PubMed
-
- Yoshihara S, Katayama M, Geng X, Ikeuchi M. Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant Cell Physiol. 2004;45:1729–1737. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
