Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;5(5):561-3.
doi: 10.4161/psb.11424. Epub 2010 Apr 20.

Non-proteolytic protein ubiquitination is crucial for iron deficiency signaling

Affiliations

Non-proteolytic protein ubiquitination is crucial for iron deficiency signaling

Wenfeng Li et al. Plant Signal Behav. 2010 May.

Abstract

Ubiquitination generally targets proteins for recognition and degradation via the 26S proteasome. Activated ubiquitin (E1) is transferred to an ubiquitin conjugase (UBC, E2) which associates with a ubiquitin ligase (E3), and multiple ubiquitin molecules are attached via linkage of Lys 48. By contrast, Lys 63-linked ubiquitin chains modify proteins in a non-proteolytic manner. We recently reported that UBC13, the only known ubiquitin conjugase capable of catalyzing Lys 63-linked polyubiqitination, is responsive to the iron (Fe) regime at the post-transcriptional level and may play a crucial role for the morphological alterations triggered by Fe deficiency in cucumber and Arabidopsis roots. It is assumed that UBC13 participates, most likely via the non-proteolytic polyubiquitination of proteins, in the signal transduction cascade associated with the acclimation of plants to the prevailing availability of Fe. In this Addendum, we present a possible scenario that occurs downstream of UBC13, which ultimately leads to Fe deficiency-specific changes in post-embryonic development of Arabidopsis roots.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources