Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior
- PMID: 20407585
- PMCID: PMC2854573
- DOI: 10.3389/fncel.2010.00006
Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior
Abstract
Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg's vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.
Keywords: bilateral; chemotaxis; drosophila melanogaster; olfaction; orientation behavior; sensory perception.
Figures





Similar articles
-
The Synthetic Moth: A Neuromorphic Approach toward Artificial Olfaction in Robots.In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 4. In: Persaud KC, Marco S, Gutiérrez-Gálvez A, editors. Neuromorphic Olfaction. Boca Raton (FL): CRC Press/Taylor & Francis; 2013. Chapter 4. PMID: 26042327 Free Books & Documents. Review.
-
Active sampling and decision making in Drosophila chemotaxis.Nat Commun. 2011 Aug 23;2:441. doi: 10.1038/ncomms1455. Nat Commun. 2011. PMID: 21863008 Free PMC article.
-
Multisensory integration for odor tracking by flying Drosophila: Behavior, circuits and speculation.Commun Integr Biol. 2010 Jan;3(1):60-3. doi: 10.4161/cib.3.1.10076. Commun Integr Biol. 2010. PMID: 20539786 Free PMC article.
-
Bilateral olfactory sensory input enhances chemotaxis behavior.Nat Neurosci. 2008 Feb;11(2):187-99. doi: 10.1038/nn2031. Epub 2007 Dec 23. Nat Neurosci. 2008. PMID: 18157126
-
Olfactory networks: from sensation to perception.Curr Opin Genet Dev. 2011 Dec;21(6):806-11. doi: 10.1016/j.gde.2011.07.006. Epub 2011 Aug 31. Curr Opin Genet Dev. 2011. PMID: 21889328 Review.
Cited by
-
Sensory determinants of behavioral dynamics in Drosophila thermotaxis.Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E220-9. doi: 10.1073/pnas.1416212112. Epub 2014 Dec 30. Proc Natl Acad Sci U S A. 2015. PMID: 25550513 Free PMC article.
-
Automated tracking of animal posture and movement during exploration and sensory orientation behaviors.PLoS One. 2012;7(8):e41642. doi: 10.1371/journal.pone.0041642. Epub 2012 Aug 9. PLoS One. 2012. PMID: 22912674 Free PMC article.
-
Rats track odour trails accurately using a multi-layered strategy with near-optimal sampling.Nat Commun. 2012 Feb 28;3:703. doi: 10.1038/ncomms1712. Nat Commun. 2012. PMID: 22426224
-
A Model of Drosophila Larva Chemotaxis.PLoS Comput Biol. 2015 Nov 24;11(11):e1004606. doi: 10.1371/journal.pcbi.1004606. eCollection 2015 Nov. PLoS Comput Biol. 2015. PMID: 26600460 Free PMC article.
-
Dropping Counter: A Detection Algorithm for Identifying Odour-Evoked Responses from Noisy Electroantennograms Measured by a Flying Robot.Sensors (Basel). 2019 Oct 21;19(20):4574. doi: 10.3390/s19204574. Sensors (Basel). 2019. PMID: 31640187 Free PMC article.
References
-
- Arnold G., Masson C., Budharugsa S. (1985). Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera). Cell Tissue Res. 242, 593–60510.1007/BF00225425 - DOI
LinkOut - more resources
Full Text Sources
Molecular Biology Databases