Statistical contributions to proteomic research
- PMID: 20407946
- PMCID: PMC3889133
- DOI: 10.1007/978-1-60761-711-2_9
Statistical contributions to proteomic research
Abstract
Proteomic profiling has the potential to impact the diagnosis, prognosis, and treatment of various diseases. A number of different proteomic technologies are available that allow us to look at many proteins at once, and all of them yield complex data that raise significant quantitative challenges. Inadequate attention to these quantitative issues can prevent these studies from achieving their desired goals, and can even lead to invalid results. In this chapter, we describe various ways the involvement of statisticians or other quantitative scientists in the study team can contribute to the success of proteomic research, and we outline some of the key statistical principles that should guide the experimental design and analysis of such studies.
Figures








Similar articles
-
An insight into high-resolution mass-spectrometry data.Biostatistics. 2009 Jul;10(3):481-500. doi: 10.1093/biostatistics/kxp006. Epub 2009 Mar 26. Biostatistics. 2009. PMID: 19325168 Free PMC article.
-
[Surface enhanced laser desorption/ionization (SELDI): proteomics technology and its application in oncology].Med Clin (Barc). 2008 Sep 13;131(8):312-7. Med Clin (Barc). 2008. PMID: 18803927 Review. Spanish.
-
Urine peptidomics for clinical biomarker discovery.Adv Clin Chem. 2010;51:181-213. doi: 10.1016/s0065-2423(10)51007-2. Adv Clin Chem. 2010. PMID: 20857622 Review.
-
The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales.Brief Funct Genomic Proteomic. 2005 Feb;3(4):322-31. doi: 10.1093/bfgp/3.4.322. Brief Funct Genomic Proteomic. 2005. PMID: 15814023 Review.
-
Serum proteomic profiling for autism using magnetic bead-assisted matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a pilot study.World J Pediatr. 2018 Jun;14(3):233-237. doi: 10.1007/s12519-017-0102-x. Epub 2018 Jan 24. World J Pediatr. 2018. PMID: 29368242
Cited by
-
Statistical Methods for Proteomic Biomarker Discovery based on Feature Extraction or Functional Modeling Approaches.Stat Interface. 2012 Jan 1;5(1):117-135. doi: 10.4310/sii.2012.v5.n1.a11. Stat Interface. 2012. PMID: 23814640 Free PMC article.
-
Predictive Modelling in Clinical Bioinformatics: Key Concepts for Startups.BioTech (Basel). 2022 Aug 17;11(3):35. doi: 10.3390/biotech11030035. BioTech (Basel). 2022. PMID: 35997343 Free PMC article.
-
Importance of Block Randomization When Designing Proteomics Experiments.J Proteome Res. 2021 Jan 1;20(1):122-128. doi: 10.1021/acs.jproteome.0c00536. Epub 2020 Oct 5. J Proteome Res. 2021. PMID: 32969222 Free PMC article.
References
-
- Baggerly KA, Morris JS, Wang J, Gold D, Xiao LC, Coombes KR. A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization time of flight proteomics spectra from serum samples. Proteomics. 2003;3:1667–1672. - PubMed
-
- Baggerly KA, Edmonson S, Morris JS, Coombes KR. High-Resolution Serum Proteomic Patterns for Ovarian Cancer Detection. Endocrine-Related Cancers. 2004;11(4):583–584. - PubMed
-
- Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics. 2004;20:777–785. - PubMed
-
- Baggerly KA, Morris JS, Edmonson S, Coombes KR. Signal in Noise: Evaluating Reported Reproducibility of Serum Proteomic Tests for Ovarian Cancer. Journal of the National Cancer Institute. 2005;97:307–309. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources