Cytoarchitectural maps of the human brain in standard anatomical space
- PMID: 20408219
- DOI: 10.1002/(SICI)1097-0193(1997)5:4<222::AID-HBM3>3.0.CO;2-5
Cytoarchitectural maps of the human brain in standard anatomical space
Abstract
The remarkable intersubject variability of the human cerebral cortex poses major problems for the systematic study of functional-structural relationships. Lack of homology and macroscopical landmarks between brains implies that one cannot in three or two dimensions find which part of one gyrus or sulcus matches which part of another subject's cerebral cortex. Furthermore, the frequent lack of correspondence between cytoarchitectural borders and the bottom of sulci invalidates correlations between gross morphology and microstructure. Therefore, we proposed that microstructural criteria should be used to define an anatomical space for comparison of individual brains and for establishing a probability map for each cytoarchitecturally defined area by quantitative means [Roland and Zilles, 1994; Trends Neurosci 17:458-467]. Here we examined the mapping of cytoarchitectural areas 4a, 4p, 3a, 3b, V1, and V2 into two commonly used anatomical standard reference spaces. Linear global transformations into Talairach space produced minimal overlap of corresponding cytoarchitectural areas. Global affine and nonaffine transformations into the anatomical space of the Human Brain Atlas (HBA) gave significantly larger volumes of overlap of corresponding cytoarchitectural areas. It is expected that local transformations can further improve the registration of corresponding cytoarchitectural areas and thereby define a common standard anatomical space in which to study variations in gross anatomical structure and function.
Copyright (c) 1997 Wiley-Liss, Inc.
Similar articles
-
Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space.Neuroimage. 2000 Jun;11(6 Pt 1):684-96. doi: 10.1006/nimg.2000.0548. Neuroimage. 2000. PMID: 10860796
-
Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2.Neuroimage. 2005 May 15;26(1):73-82. doi: 10.1016/j.neuroimage.2005.01.021. Neuroimage. 2005. PMID: 15862207 Clinical Trial.
-
Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps.Anat Embryol (Berl). 2005 Dec;210(5-6):343-52. doi: 10.1007/s00429-005-0025-5. Anat Embryol (Berl). 2005. PMID: 16208455
-
Brain atlases--a new research tool.Trends Neurosci. 1994 Nov;17(11):458-67. doi: 10.1016/0166-2236(94)90131-7. Trends Neurosci. 1994. PMID: 7531886 Review.
-
Advances in cytoarchitectonic mapping of the human cerebral cortex.Neuroimaging Clin N Am. 2001 May;11(2):151-69, vii. Neuroimaging Clin N Am. 2001. PMID: 11489732 Review.
Cited by
-
Greater variability in chimpanzee (Pan troglodytes) brain structure among males.Proc Biol Sci. 2020 Apr 29;287(1925):20192858. doi: 10.1098/rspb.2019.2858. Epub 2020 Apr 22. Proc Biol Sci. 2020. PMID: 32315585 Free PMC article.
-
Connectomic profiles for individualized resting state networks and regions of interest.Brain Connect. 2015 Mar;5(2):69-79. doi: 10.1089/brain.2014.0229. Epub 2014 Sep 25. Brain Connect. 2015. PMID: 25090040 Free PMC article.
-
Towards multimodal atlases of the human brain.Nat Rev Neurosci. 2006 Dec;7(12):952-66. doi: 10.1038/nrn2012. Nat Rev Neurosci. 2006. PMID: 17115077 Free PMC article. Review.
-
Accurate prediction of V1 location from cortical folds in a surface coordinate system.Neuroimage. 2008 Feb 15;39(4):1585-99. doi: 10.1016/j.neuroimage.2007.10.033. Epub 2007 Nov 6. Neuroimage. 2008. PMID: 18055222 Free PMC article.
-
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.Neuroimage. 2009 Jul 1;46(3):786-802. doi: 10.1016/j.neuroimage.2008.12.037. Epub 2009 Jan 13. Neuroimage. 2009. PMID: 19195496 Free PMC article.
LinkOut - more resources
Full Text Sources
Miscellaneous