Predicting secondary structural folding kinetics for nucleic acids
- PMID: 20409482
- PMCID: PMC2856163
- DOI: 10.1016/j.bpj.2009.12.4319
Predicting secondary structural folding kinetics for nucleic acids
Abstract
We report a new computational approach to the prediction of RNA secondary structure folding kinetics. In this approach, each elementary kinetic step is represented as the transformation between two secondary structures that differ by a helix. Based on the free energy landscape analysis, we identify three types of dominant pathways and the rate constants for the kinetic steps: 1), formation; 2), disruption of a helix stem; and 3), helix formation with concomitant partial melting of a competing (incompatible) helix. The third pathway, termed the tunneling pathway, is the low-barrier dominant pathway for the conversion between two incompatible helices. Comparisons with experimental data indicate that this new method is quite reliable in predicting the kinetics for RNA secondary structural folding and structural rearrangements. The approach presented here may provide a robust first step for further systematic development of a predictive theory for the folding kinetics for large RNAs.
Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures







Similar articles
-
Kinetic partitioning mechanism of HDV ribozyme folding.J Chem Phys. 2014 Jan 14;140(2):025102. doi: 10.1063/1.4861037. J Chem Phys. 2014. PMID: 24437918
-
Cotranscriptional folding kinetics of ribonucleic acid secondary structures.J Chem Phys. 2011 Dec 28;135(24):245101. doi: 10.1063/1.3671644. J Chem Phys. 2011. PMID: 22225186 Free PMC article.
-
A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo.RNA. 2016 Mar;22(3):416-27. doi: 10.1261/rna.055178.115. Epub 2016 Jan 12. RNA. 2016. PMID: 26759451 Free PMC article.
-
Transition Path Times Measured by Single-Molecule Spectroscopy.J Mol Biol. 2018 Feb 16;430(4):409-423. doi: 10.1016/j.jmb.2017.05.018. Epub 2017 May 25. J Mol Biol. 2018. PMID: 28551335 Free PMC article. Review.
-
An extra dimension in nucleic acid sequence recognition.Q Rev Biophys. 2005 Nov;38(4):311-20. doi: 10.1017/S0033583506004197. Epub 2006 May 31. Q Rev Biophys. 2005. PMID: 16737560 Review.
Cited by
-
RNA folding pathways and kinetics using 2D energy landscapes.J Math Biol. 2015 Jan;70(1-2):173-96. doi: 10.1007/s00285-014-0760-4. Epub 2014 Feb 12. J Math Biol. 2015. PMID: 24515409
-
Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.Wiley Interdiscip Rev RNA. 2015 Nov-Dec;6(6):631-50. doi: 10.1002/wrna.1300. Epub 2015 Sep 11. Wiley Interdiscip Rev RNA. 2015. PMID: 26361734 Free PMC article. Review.
-
Salt effect on thermodynamics and kinetics of a single RNA base pair.RNA. 2020 Apr;26(4):470-480. doi: 10.1261/rna.073882.119. Epub 2020 Jan 27. RNA. 2020. PMID: 31988191 Free PMC article.
-
Stem-Loop RNA Hairpins in Giant Viruses: Invading rRNA-Like Repeats and a Template Free RNA.Front Microbiol. 2018 Feb 1;9:101. doi: 10.3389/fmicb.2018.00101. eCollection 2018. Front Microbiol. 2018. PMID: 29449833 Free PMC article.
-
A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots.Biophys J. 2019 Aug 6;117(3):520-532. doi: 10.1016/j.bpj.2019.06.037. Epub 2019 Jul 10. Biophys J. 2019. PMID: 31353036 Free PMC article.
References
-
- Micura R., Höbartner C. On secondary structure rearrangements and equilibria of small RNAs. ChemBioChem. 2003;4:984–990. - PubMed
-
- Fürtig B., Buck J., Schwalbe H. Time-resolved NMR studies of RNA folding. Biopolymers. 2007;86:360–383. - PubMed
-
- Harlepp S., Marchal T., Chatenay D. Probing complex RNA structures by mechanical force. Eur Phys. J. E. Soft Matter. 2003;12:605–615. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources